Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Epoxy commercial

Traces of formaldehyde, present in neat end-capped polymer or produced by processing polymer under abusive conditions, detract from polymer stabihty. Commercial resins typically contain formaldehyde scavengers. Nitrogen compounds, especially amines and amides, epoxies, and polyhydroxy compounds, are particularly efficacious scavengers. [Pg.58]

With aldehydes, primary alcohols readily form acetals, RCH(OR )2. Acetone also forms acetals (often called ketals), (CH2)2C(OR)2, in an exothermic reaction, but the equiUbrium concentration is small at ambient temperature. However, the methyl acetal of acetone, 2,2-dimethoxypropane [77-76-9] was once made commercially by reaction with methanol at low temperature for use as a gasoline additive (5). Isopropenyl methyl ether [116-11-OJ, useful as a hydroxyl blocking agent in urethane and epoxy polymer chemistry (6), is obtained in good yield by thermal pyrolysis of 2,2-dimethoxypropane. With other primary, secondary, and tertiary alcohols, the equiUbrium is progressively less favorable to the formation of ketals, in that order. However, acetals of acetone with other primary and secondary alcohols, and of other ketones, can be made from 2,2-dimethoxypropane by transacetalation procedures (7,8). Because they hydroly2e extensively, ketals of primary and especially secondary alcohols are effective water scavengers. [Pg.94]

Syntactic Cellular Polymers. Syntactic cellular polymer is produced by dispersing rigid, foamed, microscopic particles in a fluid polymer and then stabilizing the system. The particles are generally spheres or microhalloons of phenoHc resin, urea—formaldehyde resin, glass, or siUca, ranging 30—120 lm dia. Commercial microhalloons have densities of approximately 144 kg/m (9 lbs/fT). The fluid polymers used are the usual coating resins, eg, epoxy resin, polyesters, and urea—formaldehyde resin. [Pg.408]

Cost bilizers. The variety of known costabiHzers for the mixed metal stabilizers is a very long listing. There are, however, a relatively small number of commercially used costabiHzers. Some of these additives can also be added by the PVC compounder or processor ia addition to the stabilizer package to further enhance the desired performance characteristics. The epoxy compounds and phenoHc antioxidants are among the most commonly used costabiHzers with the mixed metal stabilizers. [Pg.550]

The basic metal salts and soaps tend to be less cosdy than the alkyl tin stabilizers for example, in the United States, the market price in 1993 for calcium stearate was about 1.30— 1.60, zinc stearate was 1.70— 2.00, and barium stearate was 2.40— 2.80/kg. Not all of the coadditives are necessary in every PVC compound. Typically, commercial mixed metal stabilizers contain most of the necessary coadditives and usually an epoxy compound and a phosphite are the only additional products that may be added by the processor. The requited costabilizers, however, significantly add to the stabilization costs. Typical phosphites, used in most flexible PVC formulations, are sold for 4.00— 7.50/kg. Typical antioxidants are bisphenol A, selling at 2.00/kg Nnonylphenol at 1.25/kg and BHT at 3.50/kg, respectively. Pricing for ESO is about 2.00— 2.50/kg. Polyols, such as pentaerythritol, used with the barium—cadmium systems, sells at 2.00, whereas the derivative dipentaerythritol costs over three times as much. The P-diketones and specialized dihydropyridines, which are powerful costabilizers for calcium—zinc and barium—zinc systems, are very cosdy. These additives are 10.00 and 20.00/kg, respectively, contributing significantly to the overall stabilizer costs. Hydrotalcites are sold for about 5.00— 7.00/kg. [Pg.551]

A second type of uv curing chemistry is used, employing cationic curing as opposed to free-radical polymerization. This technology uses vinyl ethers and epoxy resins for the oligomers, reactive resins, and monomers. The initiators form Lewis acids upon absorption of the uv energy and the acid causes cationic polymerization. Although this chemistry has improved adhesion and flexibility and offers lower viscosity compared to the typical acrylate system, the cationic chemistry is very sensitive to humidity conditions and amine contamination. Both chemistries are used commercially. [Pg.248]

Inversion ofMon cjueous Polymers. Many polymers such as polyurethanes, polyesters, polypropylene, epoxy resins (qv), and siHcones that cannot be made via emulsion polymerization are converted into latices. Such polymers are dissolved in solvent and inverted via emulsification, foUowed by solvent stripping (80). SoHd polymers are milled with long-chain fatty acids and diluted in weak alkaH solutions until dispersion occurs (81). Such latices usually have lower polymer concentrations after the solvent has been removed. For commercial uses the latex soHds are increased by techniques such as creaming. [Pg.27]

Softening and cure is examined with the help of a torsional pendulum modified with a braid (65), which supports thermosets such as phenoHcs and epoxies that change from a Hquid to a soHd on curing. Another method uses vibrating arms coupled to a scrim-supported sample to measure storage and loss moduH as a function of time and temperature. An isothermal analytical method for phenoHc resins provides data regarding rate constants and activation energies and allows prediction of cure characteristics under conditions of commercial use (47). [Pg.301]

Adequate yields in this reaction requite extremely efficient removal of HCI otherwise CH Cl is formed. Some commercial processes utilize catalytic reactions of epoxy with POCl (48) ... [Pg.369]

Bisphenol A diglycidyl ether [1675-54-3] reacts readily with methacrylic acid [71-49-4] in the presence of benzyl dimethyl amine catalyst to produce bisphenol epoxy dimethacrylate resins known commercially as vinyl esters. The resins display beneficial tensile properties that provide enhanced stmctural performance, especially in filament-wound glass-reinforced composites. The resins can be modified extensively to alter properties by extending the diepoxide with bisphenol A, phenol novolak, or carboxyl-terrninated mbbers. [Pg.313]

Alkylated phenol derivatives are used as raw materials for the production of resins, novolaks (alcohol-soluble resins of the phenol—formaldehyde type), herbicides, insecticides, antioxidants, and other chemicals. The synthesis of 2,6-xylenol [576-26-1] h.a.s become commercially important since PPO resin, poly(2,6-dimethyl phenylene oxide), an engineering thermoplastic, was developed (114,115). The demand for (9-cresol and 2,6-xylenol (2,6-dimethylphenol) increased further in the 1980s along with the growing use of epoxy cresol novolak (ECN) in the electronics industries and poly(phenylene ether) resin in the automobile industries. The ECN is derived from o-cresol, and poly(phenylene ether) resin is derived from 2,6-xylenol. [Pg.53]

The production of alkylphenols exceeds 450,000 t/yr on a worldwide basis. Alkylphenols of greatest commercial importance have alkyl groups ranging in size from one to twelve carbons. The direct use of alkylphenols is limited to a few minor appUcations such as epoxy-curing catalysts and biocides. The vast majority of alkylphenols are used to synthesize derivatives which have appUcations ranging from surfactants to pharmaceuticals. The four principal markets are nonionic surfactants, phenoUc resins, polymer additives, and agrochemicals. [Pg.57]

Only a few commercial uses for TDA per se have been found. In epoxy curing appHcations, 2,4- I DA has been used as a component of a eutectic mixture with short chain aUphatic glycidal ether resins (46) as well as by itself (46,47) TDA (46) and single isomers (47) are also used as amine curatives. TDA can be used as a chain extender in polyurethanes (48,49). TDA is cited as a monomer in making aromatic polymers with unique properties, eg, amorphous polyamides (50), powdered polyamides (51), and low melting, whoUy aromatic polyamides (52). [Pg.239]

A variety of thermosetting resins are used in SMC. Polyesters represent the most volume and are available in systems that provide low shrinkage and low surface profile by means of special additives. Class A automotive surface requirements have resulted in the development of sophisticated systems that commercially produce auto body panels that can be taken direcdy from the mold and processed through standard automotive painting systems, without additional surface finishing. Vinyl ester and epoxy resins (qv) are also used in SMC for more stmcturaHy demanding appHcations. [Pg.96]

Some commercial durable antistatic finishes have been Hsted in Table 3 (98). Early patents suggest that amino resins (qv) can impart both antisHp and antistatic properties to nylon, acryUc, and polyester fabrics. CycHc polyurethanes, water-soluble amine salts cross-linked with styrene, and water-soluble amine salts of sulfonated polystyrene have been claimed to confer durable antistatic protection. Later patents included dibydroxyethyl sulfone [2580-77-0] hydroxyalkylated cellulose or starch, poly(vinyl alcohol) [9002-86-2] cross-linked with dimethylolethylene urea, chlorotria2ine derivatives, and epoxy-based products. Other patents claim the use of various acryUc polymers and copolymers. Essentially, durable antistats are polyelectrolytes, and the majority of usehil products involve variations of cross-linked polyamines containing polyethoxy segments (92,99—101). [Pg.294]

Boron filaments are formed by the chemical vapor deposition of boron trichloride on tungsten wire. High performance reinforcing boron fibers are available from 10—20 mm in diameter. These are used mainly in epoxy resins and aluminum and titanium. Commercial uses include golf club shafts, tennis and squash racquets, and fishing rods. The primary use is in the aerospace industry. [Pg.184]

Glycidyl and Vinyl Esters. Glycidyl neodecanoate [26761-45-5] sold commercially as GLYDEXXN-10 (Exxon) or as CarduraElO (Shell), is prepared by the reaction of neodecanoic acid and epichl orohydrin under alkaline conditions, followed by purification. Physical properties of the commercially available material are given in Table 3. The material is a mobile Hquid monomer with a mild odor and is used primarily in coatings. Eor example, it is used as an intermediate for the production of a range of alkyd resins (qv) and acryHcs, and as a reactive diluent for epoxy resins (qv). [Pg.106]

Epoxy and polyester systems filled with flake glass provide a finish that is tough and resistant to abrasion. One commercial system is filled with copper flakes to provide intrinsic antifouling action. These systems are apphed at a total dry film thickness of about 625 p.m and are used on pleasure boats. [Pg.366]

In the freeboard areas, commercial ships use organic 2inc-rich primers extensively and usually topcoat them with a two- or three-coat epoxy system. U.S. Navy ships use an organic 2inc-rich primer, two to three coats of an epoxy-polyamide coatings, and a siUcone-alkyd topcoat (16) the entire dry system is 150—225 )J.m thick. [Pg.367]

Fig. 1. Structures of commercial epoxy resins (a) phenolic novolac epoxy resin, (b) glycidated polybasic acid, (c) glycidated polyamine (A,A,A, A -tetraglycidyl-4,4 -diaminodiphenylmethane [28768-32-3] (TGMDA)), and (d) glycidated bisphenol A. Fig. 1. Structures of commercial epoxy resins (a) phenolic novolac epoxy resin, (b) glycidated polybasic acid, (c) glycidated polyamine (A,A,A, A -tetraglycidyl-4,4 -diaminodiphenylmethane [28768-32-3] (TGMDA)), and (d) glycidated bisphenol A.

See other pages where Epoxy commercial is mentioned: [Pg.275]    [Pg.425]    [Pg.275]    [Pg.425]    [Pg.152]    [Pg.293]    [Pg.335]    [Pg.15]    [Pg.532]    [Pg.307]    [Pg.315]    [Pg.361]    [Pg.68]    [Pg.224]    [Pg.247]    [Pg.251]    [Pg.434]    [Pg.49]    [Pg.228]    [Pg.432]    [Pg.527]    [Pg.110]    [Pg.196]    [Pg.438]    [Pg.519]    [Pg.278]    [Pg.32]    [Pg.319]    [Pg.355]    [Pg.366]    [Pg.19]    [Pg.19]    [Pg.19]   
See also in sourсe #XX -- [ Pg.89 ]




SEARCH



Epoxies commercial epoxy resins

Epoxy resins commercial

Epoxy resins commercial manufacture

Preparation of Commercial Epoxy Resins

Properties of Selected Commercial Epoxy Adhesive Formulations

© 2024 chempedia.info