Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Filament wound

Bisphenol A diglycidyl ether [1675-54-3] reacts readily with methacrylic acid [71-49-4] in the presence of benzyl dimethyl amine catalyst to produce bisphenol epoxy dimethacrylate resins known commercially as vinyl esters. The resins display beneficial tensile properties that provide enhanced stmctural performance, especially in filament-wound glass-reinforced composites. The resins can be modified extensively to alter properties by extending the diepoxide with bisphenol A, phenol novolak, or carboxyl-terrninated mbbers. [Pg.313]

Characteristic Cast resin Filled resin Glass-reinforced laminate Filament-wound laminate Pultmded profile... [Pg.320]

The thermal stabiUty of epoxy phenol—novolak resins is useful in adhesives, stmctural and electrical laminates, coatings, castings, and encapsulations for elevated temperature service (Table 3). Filament-wound pipe and storage tanks, liners for pumps and other chemical process equipment, and corrosion-resistant coatings are typical appHcations using the chemically resistant properties of epoxy novolak resins. [Pg.364]

An important appHcation is for filament-wound glass-reinforced pipe used in oil fields, chemical plants, water distribution, and as electrical conduits. Low viscosity Hquid systems having good mechanical properties (elongation at break) when cured are preferred. These are usually cured with Hquid anhydride or aromatic-amine hardeners. Similar systems are used for filament-win ding pressure botdes and rocket motor casings. [Pg.371]

Originally developed for tyre cords, Kevlar-type materials have also become widely used in composites. Uses include filament-wound rocket motors and pressure vessels, metal-lined Kevlar-overwrapped vessels in the space shuttle, boat and kayak hulls, Kevlar-epoxy helmets for the US military, and as one of the reinforcements in composite lorry cabs. [Pg.515]

Their main applications have been in heat-resistant structural laminates, electrical laminates resistant to solder baths, chemical-resistant filament-wound pipe and high-temperature adhesives. [Pg.763]

Epoxide resin laminates are of particular importance in the aircraft industry. It has been stated that the Boeing 757 and 767 aircraft use 1800 kg of carbon fibre/ epoxide resin composites for structural purposes per aeroplane. The resin has also been used with Aramid fibres for filament-wound rocket motors and pressure vessels. The AV-18 fighter aircraft is also said to be 18% epoxide resin/cc bon fibre composite. The resins are also widely used both with fibres and with honeycomb structures for such parts as helicopter blades. [Pg.773]

Property Polyester/ Glass Mat Polyester/ Woven Glass Qoth Epoxy/ Woven Glass Cloth Epoxy/ Filament Wound Glass Rovings... [Pg.120]

A filament wound composite cylindrical pressure vessel has a diameter of 1200 mm and a wall thickness of 3 mm. It is made up of 10 plies of continuous glass fibres in a polyester resin. The anangement of the plies is [O3/6O/ — 60],. Calculate the axial and hoop strain in the cylinder when an internal pressure of 3 MN/m is applied. The properties of the individual plies are... [Pg.242]

In the past a limitation on this process was that it tended to be restricted to shapes which were symmetrical about an axis of rotation and from which the mandrel could be easily extracted. However, in recent years there have been major advances through the use of collapsible or expendable cores and in particular through the development of computer-controlled winding equipment. The latter has opened the door to a whole new range of products which can be filament wound - for example, space-frame structures. Braiding machines for complex shapes are shown in Fig. 4.76. [Pg.337]

Tests on plastics in deep water have been extremely successful. As an example filament-wound RP cylinders and PVC buoys retained their strength. PVC washers and the silicone-seating compound used in steel-to-aluminum joints helped prevent their corrosion. Black twisted nylon and polypropylene... [Pg.109]

In addition to developing solid RP structures, work has been conducted on sandwich structures such as filament-wound plastic skins with low-density foamed core or a plastic honeycomb core to develop more efficient strength-to-weight structures. Sandwich structures using a syntactic core have been successfully tested so that failures occurred at prescribed high-hydrostatic pressures of 28 MPa (4,000 psi). [Pg.112]

Porous filament wound composite of oxide fibers and an inorganic adhesive, impregnated with an organic resin Hot pressed oxide, carbide, or nitride in a metal honeycomb... [Pg.119]

Specific strength Epoxy-novolac Resin matrix for filament wound motor case... [Pg.119]

RTR filament-wound pipe is, however, an anisotropic material. That is, its material properties, such as its modulus of elasticity and ultimate strength, are different in each of the principal directions of hoop and longitude. It is here where the design approaches for steel and RTR pipe part company [Fig. 4-2(c)]. This behavior is a result of the construction of filament-wound RTR pipe. [Pg.210]

Therefore, before a final wall structure can be selected, it is necessary to conduct a combined strain analysis in both the longitudinal and hoop directions. This analysis will consider thermal contraction strains, the internal pressure, and the pipe s ability to bridge soft spots in the trench s bedding. In order to do this we must know more about the inherent properties of the material we are dealing with that is a structure made up of successive layers of continuous filament-wound fiberglass strands embedded within a plastic matrix. We must know the modulus of the material in the longitudinal direction and the... [Pg.213]

The weep point or strain-to-first-crack in a wall for filament-wound pipe constructed using isophthalic plastic is currently found to be not less than 0.009 in./in. This has been repeatedly demonstrated by careful coupon testing and burst testing of pipes with strain gauge instrumentation attached. [Pg.214]

Iida, H et al., Mechanical Characteristics of Filament Wound Pressure Vessel, NASA, 1987. [Pg.665]

Optimization of Manufacture of Filament Wound Composites Using Finite Element... [Pg.256]

Minimizing the cycle time in filament wound composites can be critical to the economic success of the process. The process parameters that influence the cycle time are winding speed, molding temperature and polymer formulation. To optimize the process, a finite element analysis (FEA) was used to characterize the effect of each process parameter on the cycle time. The FEA simultaneously solved equations of mass and energy which were coupled through the temperature and conversion dependent reaction rate. The rate expression accounting for polymer cure rate was derived from a mechanistic kinetic model. [Pg.256]

Halpin (1) and Tsai (2) have presented treatises that address the effects of fiber content, orientation and properties on the composite s mechanical performance. A numerically controlled filament winding machine is capable of placing fiber in precise, three dimensional, engineered patterns. Future research addressing the molecular role of the resin s infrastructure on mechanical performance, will couple filament wound composite... [Pg.537]


See other pages where Filament wound is mentioned: [Pg.174]    [Pg.197]    [Pg.268]    [Pg.317]    [Pg.320]    [Pg.247]    [Pg.336]    [Pg.6]    [Pg.19]    [Pg.1004]    [Pg.1005]    [Pg.1026]    [Pg.1028]    [Pg.1190]    [Pg.92]    [Pg.208]    [Pg.210]    [Pg.210]    [Pg.246]    [Pg.266]    [Pg.517]    [Pg.689]    [Pg.257]    [Pg.538]   
See also in sourсe #XX -- [ Pg.711 ]

See also in sourсe #XX -- [ Pg.711 ]




SEARCH



© 2024 chempedia.info