Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enzyme activity assay procedure

Enzyme Activity Assays. The various enzyme activity assays used in the purification procedures are summarized in Table II. [Pg.267]

Glutathione-peroxidase activity was measured spectrophoto-metrically at 340nm by an enzyme coupled assay procedure of Paglia and Valentine (28) as modified by Reddy, et al. (26). A molar extinction coefficient of 6.2 x 103cm 1 was used in calculations. [Pg.259]

Soluble enzymes are employed in a wide variety of substrate and enzyme activity assays, and specialized instrumentation has been developed to automate reagent addition and quantitation. However, several disadvantages exist in the analytical use of soluble enzymes for substrate assays. Soluble enzymes are not reused or recycled, unless the cost of the enzyme justifies the lengthy repurification procedure. Furthermore, the activities of soluble enzymes decreases significantly with time, so that fresh assay solutions are frequently required. For these reasons, many assays that employ soluble enzymes have been adapted for use with immobilized enzymes. These immobilized enzymes are usually incorporated onto or into a stationary phase in a flow system substrate is introduced via a mobile, or buffer phase, and conversion into products occurs as the mobile phase flows through a column containing immobilized enzyme. A postcolumn detector allows product quantitation. [Pg.61]

The ultimate goal of an assay or an analytical procedure is to measure accurately a quantity or a concentration of an analyte, or to measure a specific activity, as in some assays for biomarkers. However, many activity assays, such as cell-based and enzyme activity assays, may not be very sensitive, may lack precision, and/or do not include the use of definitive reference standards. Assays based on measurements of physicochemical (such as chromatographic methods) or biochemical (such as ligand-binding assays) attributes of the analyte assume that these quantifiable characteristics are reflective of the quantities, concentration, or biological activity of the analyte. For the purpose of bioanalytical method validation, we will follow the recently proposed classifications for assay data by Lee et al. [4,5]. These classifications, as summarized below, provide a clear distinction with respect to analytical validation practices and requirements. [Pg.112]

Enzyme activity assays Phosphorolytic activity of phosphorylase isozymes was determined as previously described (3). Glucan synthesizing activity was monitored continuously as orthophosphate liberation using a modification of the procedure of Fossati (5). [Pg.2871]

The diastase activity was traditionally determined according to the Schade method in the earlier years (Schade et al., 1958). One unit of diastase activity (or more specifically, a-amylase), DN, is defined as that amoimt of enz)nne that converts 0.01 g of starch to the prescribed endpoint in 1 h at 37 °C under the experimental conditions. In this assay, a standard solution of starch, which reacts with iodine to produce a color solution, is used as a substrate for honey enzymes under the standard conditions (Rendleman, 2003). A recently developed procedure uses an insoluble, dyed starch substrate (Persano Oddo and Pulcini, 1999). As this substrate is hydrolyzed by ot-amylase, soluble dyed starch fragments are released into solution. After reaction termination and insoluble substrate removal by centrifugation, absorbance of the supernatant solution (at 620 nm) is measured. The absorbance is proportional to the diastase activity. This procedure has been widely adopted in the honey industry due to the convenience of a commercially available substrate and the simple assay format. [Pg.106]

Ironically, AP is the enzyme of choice for some applications due to its stability. Since it can withstand the moderately high temperatures associated with hybridization assays better than HRP, AP often is the enzyme of choice for labeling oligonucleotide probes. AP also is capable of maintaining enzymatic activity for extended periods of substrate development. Increased sensitivity can be realized in ELISA procedures by extending the substrate incubation time to hours and sometimes even days. These properties make AP the second most popular choice for antibody-enzyme conjugates (behind HRP), being used in almost 20 percent of all commercial enzyme-linked assays. [Pg.964]

Discontinuous approaches are used through necessity in radiometric assays (Oldham, 1993) and in liquid- and gas-chromatography-based protocols (Syed, 1993). Many commercially available kits designed to measure a particular enzyme activity combine absorbance and fluorescence platereader-based technologies with assay protocols that could be done continuously. However, since many users of these kits have little experience in enzymology, assay instructions usually outline a simplified procedure whereby a... [Pg.102]

At the end of the dialysis procedure, the bag is blotted dry and enzyme solution is removed prior to assessment of activity. It may be necessary to include cofactor in the assay mixture if it is possible that a dissociable cofactor was lost from the enzyme during dialysis. As the volume containing enzyme inside the dialysis bag changes to some degree during the dialysis procedure, it is usually necessary to correct measured enzyme activity to reflect this change in volume, and a correction based on protein concentration is often done in this regard. It is normal for activity thus measured to be expressed as a fraction of that in a parallel (dialyzed) control experiment. [Pg.115]

A rapid dilution procedure is routinely used in the author s laboratory to assess reversibility, and it is particularly enlightening if enzyme activity is then determined in a continuous spectrophotometric assay. A microplate assay is set up, in triplicate, as outlined in Table 4-3, later. It is assumed, for the purposes of this example, that the for substrate is 10 tM and that the IC50 for the inhibitor in the presence of 10 tM substrate is 200 tM. The concentration of enzyme used in control wells should be at least tenfold greater than the minimum concentration necessary to catalyze a quantifiable increase in product concentration over the duration of the incubation of substrate with enzyme. [Pg.115]

In one case, a small peptide with enzyme-like capability has been claimed. On the basis of model building and conformation studies, the peptide Glu-Phe-Ala-Ala-Glu-Glu-Phe-Ala-Ser-Phe was synthesized in the hope that the carboxyl groups in the center of the model would act like the carboxyl groups in lysozyme 17). The kinetic data in this article come from assays of cell wall lysis of M. lysodeikticus, chitin hydrolysis, and dextran hydrolysis. All of these assays are turbidimetric. Although details of the assay procedures were not given, the final equilibrium positions are apparently different for the reaction catalyzed by lysozyme and the reaction catalyzed by the decapeptide. Similar peptide models for proteases were made on the basis of empirical rules for predicting polypeptide conformations. These materials had no amidase activity and esterase activity only slightly better than that of histidine 59, 60). [Pg.209]

A. bronchisepticus was cultivated aerobically at 30 °C for 72 h in an inorganic medium (vide supra) in 1 liter of water (pH 7.2) containing 1 % of polypeptone and 0.5 % of phenylmalonic acid. The enzyme was formed intracellularly and induced only in the presence of phenylmalonic acid. All the procedures for the purification of the enzyme were performed below 5 °C. Potassium phosphate buffer of pH 7.0 with 0.1 mM EDTA and 5 mM of 2-mercaptoethanol was used thoughout the experiments. The enzyme activity was assayed by formation of pheylacetic acid from phenylmalonic acid. The summary of the purification procedure is shown in Table 2. The specific activity of the enzyme increased by 300-fold to 377 U/mg protein with a 15% yield from cell-free extract [9]. One unit was defined as the amount of enzyme which catalyzes the formation of 1 mmol of phenylacetic acid from phenylmalonic acid per min. [Pg.8]

In determining enzyme activities, it is usually assumed that at a fixed set of so-called saturating substrate concentrations a sufficiently accurate value of F, ax is obtained. Bisubstrate kinetic analyses of UDP-glucu-ronyltransferase [assayed with bilirubin (P5) and p-nitrophenol (V6), respectively] indicate that a true measure of the amount of enzyme can be obtained only by suitable extrapolation procedures. This restriction applies in particular to bilirubin (A2, HIO, T8) and other aglycons (M15, V6) because of substrate inhibition. UDP-glucuronic acid was inhibitory at concentrations only about 10-fold higher than the apparent Km value (HIO) this was most pronounced at relatively short incubation times. Mg was noninhibitory at concentrations equal to 20 times the apparent Km values (F3, HIO). [Pg.256]

Obviously, extrapolation procedures are impractical for routine determination of enzyme activities. When substrate saturation-curves conform to rectangular hyperbolas, reasonable concentrations of substrates should equal 10 to 20 times the respective Km values. As outlined above, application of this rule to assays of bilirubin UDP-glycosyltransferase activities is hampered by substrate inhibition and by occasional deviation from Michaelis-Menten kinetics. The best alternative in such cases may be to choose the concentrations at optimal enzyme activity. However, great care should be exercised in interpreting the results. When a bio-... [Pg.256]

The question may be raised whether it is preferable to assay artificially stimulated enzyme. Uncontrollable activation of enzyme samples, e.g., due to variation in homogenization and preparation procedures, or to addition of unsuspected activating agents, may occur, contributing to variation of enzyme activities of native preparations (Table 1). In con-... [Pg.257]

To purify a protein, it is essential to have a way of detecting and quantifying that protein in the presence of many other proteins at each stage of the procedure. Often, purification must proceed in the absence of any information about the size and physical properties of the protein or about the fraction of the total protein mass it represents in the extract. For proteins that are enzymes, the amount in a given solution or tissue extract can be measured, or assayed, in terms of the catalytic effect the enzyme produces—that is, the increase in the rate at which its substrate is converted to reaction products when the enzyme is present. For this purpose one must know (1) the overall equation of the reaction catalyzed, (2) an analytical procedure for determining the disappearance of the substrate or the appearance of a reaction product, (3) whether the enzyme requires cofactors such as metal ions or coenzymes, (4) the dependence of the enzyme activity on substrate concentration, (5) the optimum pH, and (6) a temperature zone in which the enzyme is stable and has high activity. Enzymes are usually assayed at their optimum pH and at some convenient temperature within the range... [Pg.94]

To test whether a polypeptide or other compound carried on a given bead has a derived biological activity, such as the ability to inhibit a certain enzyme, various assays that require only one bead can be devised. However, if a particular bead carries a compound of interest, how can it be identified The bead carries only a small amount of compound but it may be possible using microsequencing procedures to identify it. An alternative procedure is to use an encoding method to identify the beads. [Pg.129]

Whether an enzyme is obtained commercially or prepared in a multistep procedure, an experimental method must be developed to detect and quantify the specific enzyme activity. During isolation and purification of an enzyme, the assay is necessary to determine the amount and purity of the enzyme and to evaluate its kinetic properties. An assay is also essential for a further study of the mechanism of the catalyzed reaction. [Pg.287]

The conditions used in an enzyme assay depend on what is to be accomplished by the assay. There are two primary applications of an enzyme assay procedure. First, it may be used to measure the concentration of active enzyme in a preparation. In this circumstance, the measured rate of the enzyme-catalyzed reaction must be proportional to the concentration of enzyme stated in more kinetic terms, there must be a linear relationship between initial rate and enzyme concentration (the reaction is first order in enzyme concentration). To achieve this, certain conditions must be met (1) the concentrations of substrate(s), cofactors, and other requirements must be in excess (2) the reaction mixture must not contain inhibitors of the enzyme and (3) all environmental factors such as pH, temperature, and ionic strength should be controlled. Under these conditions, a plot of enzyme activity (p-rnole product formed/minute) vs. enzyme concentration is a straight line and can be used to estimate the concentration of active enzyme in solution. [Pg.289]

In addition to assay features already mentioned, other factors may influence the choice of assay by the user. In terms of sensitivity of the assay, the threshold of detection of lipase activity, using the procedures as described in this unit, is on the order of 10 2 U for titrimetry, 10H U for colorimetry, and 10 4 U for spectrophotometry (where U is the amount of enzyme required to yield 1 imol product per minute). The smallest amounts (volumes) of materials, including enzyme, are required for the spectrophotometric method, and progressively more material is required for the colorimetric and titrimetric methods. Unless a flow cell adapter is available, the spectrophotometric method is not suitable for analysis of particulate (immobilized) enzyme preparations, whereas the other assay procedures are. [Pg.379]


See other pages where Enzyme activity assay procedure is mentioned: [Pg.245]    [Pg.178]    [Pg.503]    [Pg.530]    [Pg.812]    [Pg.965]    [Pg.46]    [Pg.255]    [Pg.94]    [Pg.20]    [Pg.101]    [Pg.212]    [Pg.249]    [Pg.645]    [Pg.149]    [Pg.151]    [Pg.11]    [Pg.457]    [Pg.457]    [Pg.118]    [Pg.284]    [Pg.345]    [Pg.356]    [Pg.404]    [Pg.3]    [Pg.278]    [Pg.358]   
See also in sourсe #XX -- [ Pg.280 ]




SEARCH



Assay procedure

Enzyme activation assays

Enzymes activity assays

Enzymes assay

© 2024 chempedia.info