Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enol ethers, silyl from aldehydes

Following from the examples of allyltrichlorosilanes 21.5, Denmark introduced the related eno)g4 richlorosilanes 21.97 (Scheme 21.13) to cany out Mukaiyama-lype nucleophilic additions to carbonyl compounds. " According to Mayr s nucleophilicity scale, silyl enol ethers derived from aldehydes and ketones and, in particular, silyl ketene acetals are even more powerful nucleophilic reagents than the respective allyl silanes. Indeed, the aldol-type addition of trichlorosilyl enol ethers 21.97a-d to aldehydes 21.4 proceeds readily at room temperature without a catalyst exhibiting simple first-order kinetics in each component (Scheme 21.13), which contrasts with the lack of reactivity of allyl silanes in the absence of a catalyst. [Pg.334]

Althongh silyl enol ethers are rather nnreactive in the Pd-catalyzed allylation, the use of allylic carbonates in conjunction with 5 mol % of Pd2(dba)3CHCl3 and 10 mol % of dppe in refluxing THE has been shown to give satisfactory resnlts, as summarized in Scheme Silyl enol ethers derived from aldehydes also serve as satisfactory enolates. [Pg.141]

Some synthetic modification for Pd(II)-catalyzed oxidation of silyl enol ethers is also developed. Silyl enol ethers prepared from aldehydes and ketones are converted to the corresponding a,/3-unsaturated carbonyl compound in good yields by 10 mol % of palladium(II) acetate in the presence of 1 atm pressure of O2 in DMSO as solvent (Scheme... [Pg.1206]

Formation of Trimethylsilyl Enol Ethers from Enolizable Aldehydes and Ketones. The most common methods for preparing silyl enol ethers use silyl chlorides or silyl triflate/base combinations and need careful attention during workup of the reaction and isolation of the enol ether. Silylations with BS A are generally mild and nearly neutral and do not require the addition of a supplementary base. Ionic liquids have been used for the preparation of silyl enol ethers 31 from aldehydes and ketones 30 with BS A in good yields (eq 38). These new reaction conditions open an important alternative to the use of highly toxic HMPA as solvent. ... [Pg.65]

A similar pattern is observed in the reactions of silyl enol ethers derived from aldehydes. Aldehyde-aldehyde aldol reactions had already been reduced to practice in the context of the Lewis base-catalyzed aldol reaction of trichlorosilyl enol ethers, thanks to the stabilizing effect of the trichlorosilyl chlorohydrin (Scheme 9) [25-27]. Because the product of the aldehyde-aldehyde aldol reaction is an aliphatic aldehyde, it can be quickly transformed into an umeactive chlorohydrin such... [Pg.65]

A useful catalyst for asymmetric aldol additions is prepared in situ from mono-0> 2,6-diisopropoxybenzoyl)tartaric acid and BH3 -THF complex in propionitrile solution at 0 C. Aldol reactions of ketone enol silyl ethers with aldehydes were promoted by 20 mol % of this catalyst solution. The relative stereochemistry of the major adducts was assigned as Fischer- /ir o, and predominant /i -face attack of enol ethers at the aldehyde carbonyl carbon atom was found with the (/ ,/ ) nantiomer of the tartaric acid catalyst (K. Furuta, 1991). [Pg.61]

In aldol reactions, especially Mukaiyama aldol reactions, TiIV compounds are widely employed as efficient promoters. The reactions of aldehydes or ketones with reactive enolates, such as silyl enol ethers derived from ketones, proceed smoothly to afford /3-hydroxycarbonyl compounds in the presence of a stoichiometric amount of TiCl4 (Scheme 17).6, 66 Many examples have been reported in addition to silyl enol ethers derived from ketones, ketene silyl acetals derived from ester derivatives and vinyl ethers can also serve as enolate components.67-69... [Pg.406]

The 1,4-reduction of a,/3-unsaturated aldehydes is best carried out with diphenylsilane in the presence of zinc chloride and tetrakis(triphenylphosphine) palladium436 or a combination of triethylsilane and tris(triphenylphosphine) chlororhodium 437 Other practical approaches use phenylsilane with nickel (0) and triphenylphosphine438 and diphenylsilane with cesium fluoride.83 It is possible to isolate the initial silyl enol ether intermediate from the 1,4-hydrosilylation of o, /3-unsaturated aldehydes (Eq. 264).73,411 The silyl enol ethers are produced as a mixture of E and Z isomers. [Pg.88]

Unstabilized enolates react with allylic carbonates in the presence of metalacyclic iridium-phosphoramidite catalysts. Although ketones and aldehydes have not yet been used directly as pronucleophiles with this catalyst system, silyl enol ethers [80] and enamines [81] react with linear allylic carbonates to form, after workup, p-branched, y-8 unsaturated ketones (Scheme 13). Both methods form products in high yield, branched selectivity, and enantioselectivity for a range of cinnamyl and alkyl-substituted allylic carbonates. However, the silyl enol ethers derived from aliphatic ketones reacted in lower yields than enamines derived from the same ketones. [Pg.188]

Several examples of Bi(OTf)3-catalyzed Mannich-type reactions with various silyl enol ethers are summarized in Table 12. Silyl enol ethers derived from aromatic and aliphatic ketones were reacted with an equimolar mixture of aldehyde and aniline (Scheme 10). The corresponding (3-amino ketones 27 were obtained in good yields (Table 12, entries 1M-) from aromatic-derived silyl enol ethers, except for the more hindered isobutyrophenone derivative. Silyl enol ethers derived from cyclopentanone or cyclohexanone afforded the (3-amino ketones in good yields (Table 12, entries 5 and 6). [Pg.90]

The silatropic ene pathway, that is, direct silyl transfer from an silyl enol ether to an aldehyde, may be involved as a possible mechanism in the Mukaiyama aldol-type reaction. Indeed, ab initio calculations show that the silatropic ene pathway involving the cyclic (boat and chair) transition states for the BH3-promoted aldol reaction of the trihydrosilyl enol ether derived from acetaldehyde with formaldehyde is favored [60], Recently, we have reported the possible intervention of a silatropic ene pathway in the catalytic asymmetric aldol-type reaction of silyl enol ethers of thioesters [61 ]. Chlorine- and amine-containing products thus obtained are useful intermediates for the synthesis of carnitine and GABOB (Scheme 8C.26) [62],... [Pg.563]

Although simple ketones and esters can not be allylated by Pd catalysts, they are allylated with allyl carbonates via their enol ethers of Si and Sn. In the allylation of the silyl enol ether 202 with allyl carbonate 200, transmetallation of 202 with the n-allylpalladium methoxide 201, generated from allyl methyl carbonate (200), takes place to generate the Pd enolates 203 and 204. Depending on the reaction conditions, allyl ketone 205 is formed by the reductive elimination of 203 [100]. When the ratio of Pd Ph3P is small, the a,/i-unsaturated ketone 206 is obtained by -elimination [101]. For example, the silyl enol ether 208 of aldehyde 207 is allylated with allyl carbonate (200) to give a-allylaldehyde 210 via 209. The a-allyl carboxylate 213 is obtained by allylation of ester 211 with allyl carbonate (200), after conversion of ester 211 to the ketene silyl acetal 212 [102], As the silyl group is trapped in these... [Pg.130]

Independently, Yamamoto, Yanagisawa, and others reported the asymmetric aldol reaction using trimethoxysilyl enol ethers.19 The reaction was conducted with aldehydes and trimethoxysilyl enol ethers in the presence of Tol-BINAP-AgF to give the corresponding adducts with high enantioselectivities and diastereoselectiv-ities. They obtained vyra-aldol adducts as major products even when silyl enol ethers derived from cyclic ketones were used. Moreover, when a,(3-unsaturated aldehydes were employed as substrates, 1,2 adducts were obtained exclusively (Table 9.10). From an NMR study and correlation between the E Z ratio of the enol ethers and diastereoselectiviy, they proposed a cyclic transition state (Fig. 9.5). Thus, the reaction of E enol ethers proceeded via a boat form, whereas the reaction of Z enol ethers took place via a chair form. [Pg.273]

Modem variants of the Mukaiyama aldol addition start from silyl enol ethers, not from enol ethers, and use an aldehyde instead of the acetal as the electrophile. Mukaiyama aldol additions of this kind have been included in the C,C coupling reactions that build the basic repertoire of modem synthetic chemistry and can even be performed in a catalytic enantioselective fashion. [Pg.513]

Various substrates have been successfully used in the present LASC-catalysed aldol reaction. Aromatic as well as aliphatic, a, 3-unsaturated and heterocyclic aldehydes worked well. As for silicon enolates, silyl enol ethers derived from ketones as well as ketene silyl acetals derived from thioesters and esters reacted well to give the corresponding adducts in high yields. It is noted that highly water-sensitive ketene silyl acetals reacted smoothly in water under these conditions. [Pg.275]

Phenylthioalkylation of silyl enol ethers. Silyl enol ethers of ketones, aldehydes, esters, and lactones can be alkylated regiospecifically by a -chloroalkyl phenyl sulfides in fhe presence of a Lewis acid. Zinc bromide and titanium(IV) chloride are the most effective catalysts. The former is more satisfactory for enol ethers derived from esters and lactongs. ZnBr2 and TiCL are about equally satisfactory for enol ethers of ketones. The combination of TiCL and Ti(0-f-Pr)4 is more satisfactory for enol ethers of aldehydes. Since the products can be desulfurized by Raney nickel, this reaction also provides a method for alkylation of carbonyl compounds. Of more interest, sulfoxide elimination provides a useful route to a,B-unsaturated carbonyl compounds. [Pg.567]

We have shown that benzylation and allylation at the selenium atom can be partially operative and depend on the enolate structure [38] (Scheme 32). With silyl enol ethers, derived from a-phenylselanyl ketones as substrates, the formation of ally or benzyl phenyl selenide was observed but the characterization of the carbene, which must be formed at the same time, was not achieved. In the course of the allylation or benzylation of phenylselanyl enolates, derived from a-phenylselanyl aldehydes, the amount of 0-allylated products increased with the size of the substituent. In both reactions, phenylselanyl enolates were... [Pg.128]

Mukaiyama aldol reactions of various silyl enol ethers or ketene silyl acetals with aldehydes or other electrophiles proceed smoothly in the presence of 2 mol % B(CgF5)3 [151a,c]. The following characteristic features should be noted (i) the products can be isolated as j8-trimethylsilyloxy ketones when crude adducts are worked-up without exposure to acid (ii) this reaction can be conducted in aqueous media, so that the reaction of the silyl enol ether derived from propiophenone with a commercial aqueous solution of formaldehyde does not present any problems (iii) the rate of an aldol reaction is markedly increased by use of an anhydrous solution of B(C6Fs)3 in toluene under an argon atmosphere and (iv) silyl enol ethers can be reacted with chloromethyl methyl ether or trimethylorthoformate hydroxymethyl, methoxy-methyl, or dimethoxymethyl Cl groups can be introduced at the position a to the carbonyl group. These aldol-type reactions do not proceed when triphenylborane is used (Eq. 92). [Pg.114]

In contrast with the syn preference of aldol reactions of the silyl enol ether derived from (5)-ethyl propanethioate with aldehydes using the above chiral promoter, anti selectivity has been achieved in reactions of (Z)-2-benzyloxy-l-(5 )-ethyl-l-trimethyl-siloxyethene with aldehydes. Studies of the transition states of these aldol reactions have led to the assumption that ... [Pg.403]

Kobayashi et al. found that lanthanide triflates were excellent catalysts for activation of C-N double bonds —activation by other Lewis acids required more than stoichiometric amounts of the acids. Examples were aza Diels-Alder reactions, the Man-nich-type reaction of A-(a-aminoalkyl)benzotriazoles with silyl enol ethers, the 1,3-dipolar cycloaddition of nitrones to alkenes, the 1,2-cycloaddition of diazoesters to imines, and the nucleophilic addition reactions to imines [24], These reactions are efficiently catalyzed by Yb(OTf)3. The arylimines reacted with Danishefsky s diene to give the dihydropyridones (Eq. 14) [25,26], The arylimines acted as the azadienes when reacted with cyclopentadiene, vinyl ethers or vinyl thioethers, providing the tet-rahydroquinolines (Eq. 15). Silyl enol ethers derived from esters, ketones, and thio-esters reacted with N-(a-aminoalkyl)benzotriazoles to give the /5-amino carbonyl compounds (Eq. 16) [27]. The diastereoselectivity was independent of the geometry of the silyl enol ethers, and favored the anti products. Nitrones, prepared in situ from aldehydes and N-substituted hydroxylamines, added to alkenes to afford isoxazoli-dines (Eq. 17) [28]. Addition of diazoesters to imines afforded CK-aziridines as the major products (Eq. 18) [29]. In all the reactions the imines could be generated in situ and the three-component coupling reactions proceeded smoothly in one pot. [Pg.921]

The photochemical cycloaddition of a carbonyl, generally from an aldehyde or ketone, and an alkene is called the Patemd-Buchi reaction This [2 + 2]-cycloaddition gives an oxetane (213) and the reaction is believed to proceed via a diradical intermediate. Silyl enol ethers react with aldehydes under nonphoto-chemical conditions using ZnCl2 at 25°C or SnCl4 at —78°C. ... [Pg.1231]

The use of these auxiliaries in anti aldol reactions has been described, though not by generation of the anticipated ( )-enolate. Instead, the typical (Z)-enolate is formed, and then precomplexation of a Lewis acid with the reacting aldehyde diverts the reaction away from a cyclic transition state [23]. The contrasting stereochemical trends of the catalyzed and non-catalyzed reactions are evident in an early approach to muamvatin (Scheme 9-13) [24]. Alternatively, Oppolzer has reported the Lewis acid catalyzed anti aldol reaction of a silyl enol ether derived from sultam 38 [25]. In general, however, this methodology has seen limited use in the synthesis of complex natural products. [Pg.256]

Given this problem, the attachment of the butanone synthon to aldehyde 74 prior to the methyl ketone aldol reaction was then addressed. To ovenide the unexpected. vTface preference of aldehyde 74, a chiral reagent was required and an asymmetric. syn crotylboration followed by Wacker oxidation proved effective for generating methyl ketone 87. Based on the previous results, it was considered unlikely that a boron enolate would now add selectively to aldehyde 73. However, a Mukaiyama aldol reaction should favour the desired isomer based on induction from the aldehyde partner. In practice, reaction of the silyl enol ether derived from 87 with aldehyde 73, in the presence of BF3-OEt2, afforded the required Felkin adduct 88 with >97%ds (Scheme 9-29). This provides an excellent example of a stereoselective Mukaiyama aldol reaction uniting a complex ketone and aldehyde, and this key step then enabled the successful first synthesis of swinholide A. [Pg.265]

In recent years, catalytic asymmetric Mukaiyama aldol reactions have emerged as one of the most important C—C bond-forming reactions [35]. Among the various types of chiral Lewis acid catalysts used for the Mukaiyama aldol reactions, chirally modified boron derived from N-sulfonyl-fS)-tryptophan was effective for the reaction between aldehyde and silyl enol ether [36, 37]. By using polymer-supported N-sulfonyl-fS)-tryptophan synthesized by polymerization of the chiral monomer, the polymeric version of Yamamoto s oxazaborohdinone catalyst was prepared by treatment with 3,5-bis(trifluoromethyl)phenyl boron dichloride ]38]. The polymeric chiral Lewis acid catalyst 55 worked well in the asymmetric aldol reaction of benzaldehyde with silyl enol ether derived from acetophenone to give [i-hydroxyketone with up to 95% ee, as shown in Scheme 3.16. In addition to the Mukaiyama aldol reaction, a Mannich-type reaction and an allylation reaction of imine 58 were also asymmetrically catalyzed by the same polymeric catalyst ]38]. [Pg.84]

Recent developments include an asymmetric version of the aldol reaction in the y-position. The silyl enol ether 82 from ethyl crotonate reacts with aldehydes in the presence of the Lewis acid SiCI4 and an asymmetric catalyst (see the paper if you are interested in the structure of this complex catalyst) to give a high yield of the aldol product 83. The y a ratio is >99 1 and the product 83 is virtually enantiomerically pure.23... [Pg.161]

The so-called silyl enol ethers (enoxyorganylsilanes) are important synthones, e.g, for regiospecific preparation of enolates, aldol condensation, synthesis of a-substituted carbonyl derivatives and for thermal or photochemical cycloaddition. For the preparation of silyl enol ethers the corresponding aldehydes and ketones first have to be enolized and then treated with silylating agents in the presence of a base. Thus, from butanal (608) and Me3SiCl, cis/trans- 1-trimethylsiloxybut-l-ene (609) is obtained (equation 311)347, while 1-trimethylsiloxy-l-phenylethene (610) is the product from acetophenone (90a) (equation 312)347. [Pg.732]

In all of the examples considered so far, the chiral element has been employed in stoichiometric quantities. Ultimately, it would be desirable to require only a small investment from the chirality pool. This is only possible if the chiral species responsible for enantioselectivity is catalytic. It is worth stating explicitly that, in order to achieve asymmetric induction with a chiral catalyst, the catalyzed reaction must proceed faster than the uncatalyzed reaction. One example of an asymmetric aldol addition that has been studied is variations of the Mukaiyama aldol reaction [110] whereby silyl enol ethers react with aldehydes with the aid of a chiral Lewis acid. These reactions proceed via open transition structures such as those shown in Figure... [Pg.190]

In order to reverse the diastereoselectivity in the aldol reaction, the Lewis acid-catalyzed silyl enol ether addition (73) (Mukaiyama aldol reaction) was examined. Since the Mukaiyama aldol reaction is assumed to be proceeded via an acyclic transition state, a chelation controled aldol reaction of the a-alkoxy aldehyde should be possible (74). In the presence of TiCU, the silyl enol ether derived from 14 was reacted with aldehyde 13, followed by desilylation to afford the desired anti-Felkin product 122a as a single adduct (Scheme 21). Based on precedents for chelation-controlled Mukaiyama aldol reaction (74), the exceptional high selectivity in this reaction would be accounted for by chelation of TiCl4 with the C23-methoxy group of the aldehyde 13 (eq. 13). On the other hand, when the lithium enolate derived from 14 was treated with the aldehyde 13, followed by desilylation, it gave a 1 4 ratio of the two epimers in favour of the undesired (22S)-aldol product... [Pg.292]


See other pages where Enol ethers, silyl from aldehydes is mentioned: [Pg.98]    [Pg.194]    [Pg.267]    [Pg.440]    [Pg.555]    [Pg.208]    [Pg.446]    [Pg.911]    [Pg.976]    [Pg.1353]    [Pg.388]    [Pg.275]    [Pg.100]    [Pg.630]    [Pg.634]    [Pg.634]   
See also in sourсe #XX -- [ Pg.800 ]




SEARCH



Aldehyde enolate

Aldehyde enols

Aldehydes enolates

Aldehydes enolates from

Aldehydes enolization

Aldehydes from enol ethers

Aldehydes from enols

Enolates from silyl enol ethers

Enolates silylation

Ether aldehydes

Ethers from aldehydes

From enol ethers

From ethers

From silyl enol ethers

From silyl ethers

Silyl enol ethers

Silyl enol ethers aldehyde

Silyl enolate

Silyl enolates

Silyl ethers from enolates

Silylative aldehyde

© 2024 chempedia.info