Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tartaric acid catalyst

A useful catalyst for asymmetric aldol additions is prepared in situ from mono-0> 2,6-diisopropoxybenzoyl)tartaric acid and BH3 -THF complex in propionitrile solution at 0 C. Aldol reactions of ketone enol silyl ethers with aldehydes were promoted by 20 mol % of this catalyst solution. The relative stereochemistry of the major adducts was assigned as Fischer- /ir o, and predominant /i -face attack of enol ethers at the aldehyde carbonyl carbon atom was found with the (/ ,/ ) nantiomer of the tartaric acid catalyst (K. Furuta, 1991). [Pg.61]

Oxidations. Glycol cleavage by NalO can be improved using the silca gel support and microwave irradiation. The oxidation of sulfides to either sulfoxides or sulfones by the same method seems to be dependent on the duration of the irradiation. Supported titanium/tartaric acid catalyst is suitable for the conversion of sulfides to sulfoxides using hydrogen peroxide as the main oxidant." ... [Pg.339]

A cathode containing a Raney-Ni-Tartaric acid catalyst coated with CdS particles proved to be rather effective. Irradiation of this electrode by a xenon-lamp during reduction of methyl acetoacetate in EtOH solution leads to methyl 3-hydroxybutyrate with an ee of 67%... [Pg.271]

Correia et al. used titanium-salan eatalysts in ionie liquids as solvents. Unfortunately, despite good catalytie aetivity, only modest enantioselec-tivities were detected (around 20% enantiomerie exeess). Oxidation of sulfides was also performed with silica-immobilised eatalysts. Titanium-tartaric acid catalysts were grafted onto amorphous and MCM-41 silica by reaction of the metal with the silanol groups on the surface, and used in the sulfide oxidation. In both cases, sulfoxides with low enantiomeric excesses were obtained. [Pg.148]

Make acid yields coumaUc acid when treated with fuming sulfuric acid (19). Similar treatment of malic acid in the presence of phenol and substituted phenols is a facile method of synthesi2ing coumarins that are substituted in the aromatic nucleus (20,21) (see Coumarin). Similar reactions take place with thiophenol and substituted thiophenols, yielding, among other compounds, a red dye (22) (see Dyes and dye intermediates). Oxidation of an aqueous solution of malic acid with hydrogen peroxide (qv) cataly2ed by ferrous ions yields oxalacetic acid (23). If this oxidation is performed in the presence of chromium, ferric, or titanium ions, or mixtures of these, the product is tartaric acid (24). Chlorals react with malic acid in the presence of sulfuric acid or other acidic catalysts to produce 4-ketodioxolones (25,26). [Pg.522]

Oxidation. Maleic and fumaric acids are oxidized in aqueous solution by ozone [10028-15-6] (qv) (85). Products of the reaction include glyoxyhc acid [298-12-4], oxalic acid [144-62-7], and formic acid [64-18-6], Catalytic oxidation of aqueous maleic acid occurs with hydrogen peroxide [7722-84-1] in the presence of sodium tungstate(VI) [13472-45-2] (86) and sodium molybdate(VI) [7631-95-0] (87). Both catalyst systems avoid formation of tartaric acid [133-37-9] and produce i j -epoxysuccinic acid [16533-72-5] at pH values above 5. The reaction of maleic anhydride and hydrogen peroxide in an inert solvent (methylene chloride [75-09-2]) gives permaleic acid [4565-24-6], HOOC—CH=CH—CO H (88) which is useful in Baeyer-ViUiger reactions. Both maleate and fumarate [142-42-7] are hydroxylated to tartaric acid using an osmium tetroxide [20816-12-0]/io 2LX.e [15454-31 -6] catalyst system (89). [Pg.452]

In 1989 Yamamoto et al. reported that the chiral (acyloxy)borane (CAB) complex 3 is effective in catalyzing the Diels-AIder reaction of a number of a,/ -unsaturated aldehydes [5]. The catalyst was prepared from monoacylated tartaric acid and bo-... [Pg.6]

The chiral catalyst was made from Raney nickel, which was prepared by addition in small portions of 3.9 g Raney nickel alloy to 40 ml water containing9 g NaOH. The mixture was kept at 100 C for 1 h, and then washed 15 times with 40 ml water. Chirality was introduced by treatment of the Raney nickel for I h at lOO C with 178 ml water adjusted to pH 3.2 with NaOH and containing 2g (S,S)-tartaric acid and 20 g NaBr. The solution was then decanted, and the modifying procedure was twice repeated. Hydrogenation over this catalyst of acetylacctone (100 atm, 100" C) in THF containing a small amount of acetic acid gave an isolated yield of chiral pentanediol of 44% (99.6% optical purity). [Pg.14]

Among the various strategies [34] used for designing enantioselective heterogeneous catalysts, the modification of metal surfaces by chiral auxiliaries (modifiers) is an attractive concept. However, only two efficient and technically relevant enantioselective processes based on this principle have been reported so far the hydrogenation of functionalized p-ketoesters and 2-alkanons with nickel catalysts modified by tartaric acid [35], and the hydrogenation of a-ketoesters on platinum using cinchona alk oids [36] as chiral modifiers (scheme 1). [Pg.55]

Pyruvic acid is the simplest homologue of the a-keto acid, whose established procedures for synthesis are the dehydrative decarboxylation of tartaric acid and the hydrolysis of acetyl cyanide. On the other hand, vapor-phase contact oxidation of alkyl lactates to corresponding alkyl pyruvates using V2C - and MoOa-baseds mixed oxide catalysts has also been known [1-4]. Recently we found that pyruvic acid is obtained directly from a vapor-phase oxidative-dehydrogenation of lactic acid over iron phosphate catalysts with a P/Fe atomic ratio of 1.2 at a temperature around 230°C [5]. [Pg.201]

Stereochemical Studies of the Enantio-differentiating Hydrogenation of Various Prochiral Ketones over Tartaric Acid-Modified Nickel Catalyst... [Pg.231]

The principles of the SE were applied for two enantioselective hydrogenation reactions (i) hydrogenation of P-keto esters over Ni-tartrate and (ii) hydrogenation of a-keto esters over cinchona-Pt/Al203 catalysts. In this respect the tartaric acid - P-keto ester system gave a negative result. Neither the substrate nor the modifier have bulky substituents required for SE. [Pg.243]

Catalytic asymmetric hydrogenation is a relatively developed process compared to other asymmetric processes practised today. Efforts in this direction have already been made. The first report in this respect is the use of Pd on natural silk for hydrogenating oximes and oxazolones with optical yields of about 36%. Izumi and Sachtler have shown that a Ni catalyst modified with (i ,.R)-tartaric acid can be used for the hydrogenation of methylacetoacetate to methyl-3-hydroxybutyrate. The group of Orito in Japan (1979) and Blaser and co-workers at Ciba-Geigy (1988) have reported the use of a cinchona alkaloid modified Pt/AlaO.i catalyst for the enantioselective hydrogenation of a-keto-esters such as methylpyruvate and ethylpyruvate to optically active (/f)-methylacetate and (7 )-ethylacetate. [Pg.175]

Roche carries out asymmetric hydrogenation of a p-keto-ester for a pancreatic lipase inhibitor using their Ru (II) BIHEHP catalyst. For scaling up, Roche decided to use a heterogeneous catalyst, modified Ni /L-tartaric acid with NaBr, since this was economically more attractive. [Pg.176]

Davies and Reider (1996) have given some details of the HIV protease inhibitor CRDCIVAN (INDINAVIR) for which (lS,2R)-c -amino indanol is required. Indene is epoxidized enantioselectively, using the lacobsen strategy (SS-salen Mn catalyst, aqueous NaOH and PiNO), to (lS,2/ )-indene oxide in a two-phase system, in which the OH concentration is controlled. Indene oxide was subjected to the Ritter reaction with MeCN, in the presence of oleum, and subsequent hydrolysis and crystallization in the presence of tartaric acid gives the desired amino indanol. [Pg.178]

In 2006, Wang et al. reported the synthesis of a new camphor-derived disulfonamide ligand based on L-tartaric acid that was employed in similar reactions to those described above, giving rise to enantioselectivities of up to 83% ee by using 5 mol% of catalyst loading (Scheme 3.43). ... [Pg.132]

In 1998, Ruiz et al. reported the synthesis of new chiral dithioether ligands based on a pyrrolidine backbone from (+ )-L-tartaric acid. Their corresponding cationic iridium complexes were further evaluated as catalysts for the asymmetric hydrogenation of prochiral dehydroamino acid derivatives and itaconic acid, providing enantioselectivities of up to 68% ee, as shown in Scheme 8.18. [Pg.255]

Another group of catalysts consist of cyclic borinates derived from tartaric acid. These compounds give good reactivity and enantioselectivity in Mukaiyama aldol reactions. Several structural variations such as 16 and 17 have been explored.151... [Pg.126]

The directive effect of allylic hydroxy groups can be used in conjunction with chiral catalysts to achieve enantioselective cyclopropanation. The chiral ligand used is a boronate ester derived from the (VjA jA N -tetramethyl amide of tartaric acid.186 Similar results are obtained using the potassium alkoxide, again indicating the Lewis base character of the directive effect. [Pg.920]

In the most effective, chirally modified catalytic systems, Pt/cinchonidine and Raney-Ni/tartaric acid, the enantioselectivity was also sensitive to the method of catalyst preparation and on support properties (5, 6). [Pg.525]

For the Ti(OiPr)4/silica system, the advantage of MCM-41 (a mesoporous silica) over an amorphous silica is not evident either in terms of activity or selectivity for the epoxidation of cyclohexene with H202 in tert-butyl-alcohol.148 Nevertheless, deactivation of the catalysts seems slower, although the selectivity of the recovered catalysts is also lower (allylic oxidation epoxidation = 1 1). Treatment of these solids with tartaric acid improves the properties of the Ti/silica system, but not of the Ti/MCM-41 system, although NMR,149 EXAFS,150 and IR151 data suggest that the same titanium species are present on both supports. [Pg.460]

The enantioselective hydrogenation of prochiral substances bearing an activated group, such as an ester, an acid or an amide, is often an important step in the industrial synthesis of fine and pharmaceutical products. In addition to the hydrogenation of /5-ketoesters into optically pure products with Raney nickel modified by tartaric acid [117], the asymmetric reduction of a-ketoesters on heterogeneous platinum catalysts modified by cinchona alkaloids (cinchonidine and cinchonine) was reported for the first time by Orito and coworkers [118-121]. Asymmetric catalysis on solid surfaces remains a very important research area for a better mechanistic understanding of the interaction between the substrate, the modifier and the catalyst [122-125], although excellent results in terms of enantiomeric excesses (up to 97%) have been obtained in the reduction of ethyl pyruvate under optimum reaction conditions with these Pt/cinchona systems [126-128],... [Pg.249]

Heterogeneous Ni catalysts modified by tartaric acid and NaBr show relatively high enantioselectivity for the hydrogenation of simple aliphatic ketones (Fig. 32.40) [133]. In the presence of an excess amount of pivalic acid, 2-alka-... [Pg.1147]


See other pages where Tartaric acid catalyst is mentioned: [Pg.1354]    [Pg.1354]    [Pg.526]    [Pg.527]    [Pg.200]    [Pg.7]    [Pg.36]    [Pg.75]    [Pg.1280]    [Pg.86]    [Pg.94]    [Pg.231]    [Pg.231]    [Pg.164]    [Pg.517]    [Pg.209]    [Pg.105]    [Pg.102]    [Pg.339]    [Pg.977]    [Pg.978]    [Pg.1073]    [Pg.120]   
See also in sourсe #XX -- [ Pg.124 , Pg.127 ]




SEARCH



Tartar

Tartaric acids

© 2024 chempedia.info