Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Elementary steps defined

The number of molecules that participate as reactants in an elementary step defines the molecularity of the step. If a single molecule is involved, the reaction is unimolecular. The rearrangement of methyl isonitrile is a unimolecular process. Elementary steps involving the collision of two reactant molecules are bimolecular. The reaction between NO and O3 (Equation 14.22) is bimolecular. Elementary steps involving the simultaneous collision of three molecules are termolecular. Termolecular steps are far less probable than unimolecular or bimolecular processes and are rarely encountered. The chance tiiat four or more molecules will collide simultaneously with any regularity is even more remote consequently, such collisions are never proposed as part of a reaction mechanism. [Pg.549]

Gas-phase reactions play a fundamental role in nature, for example atmospheric chemistry [1, 2, 3, 4 and 5] and interstellar chemistry [6], as well as in many teclmical processes, for example combustion and exliaust fiime cleansing [7, 8 and 9], Apart from such practical aspects the study of gas-phase reactions has provided the basis for our understanding of chemical reaction mechanisms on a microscopic level. The typically small particle densities in the gas phase mean that reactions occur in well defined elementary steps, usually not involving more than three particles. [Pg.759]

In order to anticipate possible modes of regulation of cytoskeleton dynamics in vivo, it is necessary (a) to identify the kinetic intermediates involved in the polymerization process and to characterize their structural and functional properties and (b) to define the essential elementary steps in the hydrolysis process. [Pg.47]

As explained before, a chemical reaction can seldom be described by a single elementary step, and hence we need to adapt our definition of activation for an overall reaction. Since we are not particularly interested in the effects of thermodynamics we define the apparent activation energy as... [Pg.37]

Define an elementary step and point out how it differs from an overall reaction. [Pg.402]

The very basis of the kinetic model is the reaction network, i.e. the stoichiometry of the system. Identification of the reaction network for complex systems may require extensive laboratory investigation. Although complex stoichiometric models, describing elementary steps in detail, are the most appropriate for kinetic modelling, the development of such models is time-consuming and may prove uneconomical. Moreover, in fine chemicals manufacture, very often some components cannot be analysed or not with sufficient accuracy. In most cases, only data for key reactants, major products and some by-products are available. Some components of the reaction mixture must be lumped into pseudocomponents, sometimes with an ill-defined chemical formula. Obviously, methods are needed that allow the development of simple... [Pg.323]

Central to catalysis is the notion of the catalytic site. It is defined as the catalytic center involved in the reaction steps, and, in Figure 8.1, is the molybdenum atom where the reactions take place. Since all catalytic centers are the same for molecular catalysts, the elementary steps are bimolecular or unimolecular steps with the same rate laws which characterize the homogeneous reactions in Chapter 7. However, if the reaction takes place in solution, the individual rate constants may depend on the nonreactive ligands and the solution composition in addition to temperature. [Pg.179]

FIGURE 21.1 Profiles of (a) energy, (b) reaction force, and (c) reaction force constant for a generic endoenergetic elementary step. Vertical dashed lines indicate the limits of the reaction regions defined in the text. [Pg.294]

A reaction consisting of a single elementary step alone is uncommon, and most reactions involve a number of elementary steps with reaction-intermediates (miiltistep reactions). For a reaction consisting of a series connection of several elementary steps, the munber of repetitions that an elementary step proceeds in a unit extent (advancement) of the overall reaction is defined as the stoichiometric number y v, of the step [Horiuti-Dcushima, 1939]. For example, if the cathodic reaction of hydrogen electrode consists of the following two steps,... [Pg.220]

In fact, the chemical industry often favors heterogeneous catalysis, which is also more than a century old (Sabatier was probably one of its real fathers), despite its so-far empirical nature. The development of better catalysts in heterogeneous catalysis has always relied on empirical improvement since it has been difficult to characterize active sites on the surfaces, as the so-called active sites are usually small in number(s). Presently, the number of accepted elementary steps (as defined above) is stiU Hmited to a few examples, mostly demonstrated by means of surface science [1-3] and the predictive approach, based on molecular concepts. [Pg.23]

This set of relations between reaction orders and stoichiometric coefficients defines what we call an elementary reaction, one whose kinetics are consistent with stoichiometry. We later wiU consider another restriction on an elementary reaction that is frequently used by chemists, namely, that the reaction as written also describes the mechanism by which the process occurs. We will describe complex reactions as a sequence of elementary steps by which we will mean that the molecular collisions among reactant molecules cause chemical transformations to occur in a single step at the molecular level. [Pg.32]

For a complete picture, a more detailed analysis of the many elementary steps within the coexisting catalytic cycles is necessary for their range of existence, the initial conditions can be defined by [L]-control maps An example for this is given in Sect. 3.4. [Pg.86]

Operando methodology aims to define and characterize structure/function relationships which must be interfaced with rate and dynamics measurements of the elementary steps. Recent years have shown a marked increase in the presence of spectroscopic investigations of catalytic reactions in literature (see Catalysis Today, 113 issues 1-2). For example, operando techniques were used to determine the temperature stability range of two NOx reduction catalyst types, (NH4)[Co(H20)2]Ga(P04)3 vi. (NH4)[Mn(H20)2]Ga(P04)3. Fig. 5 shows that the catalyst with manganese changes in structural stability around 673 K. Inspection of the catalyst with cobalt shows that there is no structure modification at a temperature below 673 K. [Pg.197]

In the preceding chapters, the theory of elementary reactions was discussed. The chemical processes occurring in chemically reacting flows usually proceed by a series of elementary reactions, rather than by a single step. The collection of elementary reactions defining the chemical process is called the mechanism of the reaction. When rate constants are assigned to each of the elementary steps, a chemical kinetic model for the process has been developed. [Pg.541]

Notice that in n-electron multistep electrode reactions, n kinetic parameters, rate coefficients, kh and transfer coefficients or symmetry factors, oth corresponding to each elementary step can be defined. However, these quantities are not directly accessible by experiment. [Pg.41]

A reaction mechanism is the sequence of elementary reactions, or elementary steps, that defines the pathway from reactants to products. Elementary reactions are classified as unimolecular, bimolecular, or termolecular, depending on whether one, two, or three reactant molecules are... [Pg.514]

In this review the elementary steps and their velocity coefficients are defined as follows ... [Pg.403]

Due to the proposed elementary steps of this sensing principle and the signal transduction from the surface reaction to a change of band structure and consequentially, to a change of resistance, as described in detail in (Weimar, 2002), the dependency of the sensor resistance from the concentration of analyte is logarithmic and the resistance change is dependent on the baseline value. In order to have a more transferable parameter for the characterization of sensor performance, the sensor signal S is defined as ... [Pg.86]

In the case of olefin polymerisation in the presence of homogeneous metallocene-based catalysts, the individual polymerisation stages have not been very thoroughly investigated. However, kinetic studies have helped, among others, to define the nature of the active centres and to establish the occurrence of some polymerisation elementary steps in a quantitative way. [Pg.102]

Subsequent research on this and other systems with various alkyl groups was conducted by Natta (39), Belov et al. (40,41), Patat and Sinn (42), Shilov et al. (43, 44), Chien (45), Adema (46), Clauss and Bestian (47), Henrici-Olive and Olive (48), Reichert and Schoetter (49), and Fink et al. (50, 51). Investigations of kinetics and various other methods have helped to define the nature of the active centers of some homogeneous catalysts, to explain aging effects of solid Ziegler catalysts, to establish the mechanism of the interaction of the catalyst with olefins, and to provide quantitative evidence of some elementary steps (10). [Pg.98]

Molecular reactions models are those in which the reactants and products are defined by actual molecules. The mechanistic chemistry is implicit, as active centers such as free radical and/or ion intermediates are not addressed explicitly. This pathway-oriented model is thus the expression of a sequence of elementary steps, governed by fundamental chemical phenomena such as the transition state activation barriers. The corresponding... [Pg.295]

Discussions and studies of reaction mechanisms attempt to analyse the way in which a compound A is transformed into a compound B. Varying degrees of sophistication are attached to the phrase reaction mechanism but the aim is generally to define the reaction in terms of elementary steps and stereochemistry. In solution chemistry, the structures of compounds A and B will be known and mechanistic information may be deduced from kinetic studies, solvent effects, stereochemistry, isotopic labelling, and other slight structural modifications. [Pg.152]

It is rather atypical that a photochemical reaction will proceed in a single molecular pathway. Thus, several elementary steps are involved. Normally, the majority of them are dark (thermal) reactions while, ordinarily, one activation step is produced by radiation absorption by a reactant molecule or a catalyst. From the kinetics point of view, dark reactions do not require a different methodological approach than conventional thermal or thermal-catalytic reactions. Conversely, the activation step constitutes the main distinctive aspect between thermal and radiation activated reactions. The rate of the radiation activated step is proportional to the absorbed, useful energy through a property that has been defined as the local volumetric rate of photon absorption, LVRPA (Cassano et ak, 1995 Irazoqui et al., 1976) or the local superficial rate of photon absorption, LSRPA (Imoberdorf et al., 2005). The LVRPA represents the amount of photons that are absorbed per unit time and unit reaction volume and the LSRPA the amount of photons that are absorbed per unit time and unit reaction surface. The LVRPA is a property that must be used when radiation absorption strictly occurs in a well-defined three-dimensional (volumetrical) space. On the other hand, to... [Pg.230]

The maximum difference of thermodynamic rushes is, obviously, corre spondent to the occurrence of the bottleneck in the stepwise reaction. Therefore, the rate limiting step in a sequence of chemical transformations is naturally to define as some elementary step with the maximum differ ence of thermodynamic rushes (or that has nearly the same chemical potentials) of the reaction groups involved in the transformation. Horiuti first mentioned this specificity of the stepwise reaction bottleneck. [Pg.48]

Regardless of the stochastic nature of its elementary steps, diffusion follows well-defined dependencies [1]. The wealth and beauty of these dependencies is particularly impressive when diffusion occurs in concentrated electrolyte solutions like ionic liquids. Owing to their structural variability and importance, ionic liquids represent a particularly attractive system for the study of self-diffusion and ionic transport behavior. [Pg.58]


See other pages where Elementary steps defined is mentioned: [Pg.304]    [Pg.152]    [Pg.61]    [Pg.175]    [Pg.23]    [Pg.77]    [Pg.89]    [Pg.11]    [Pg.274]    [Pg.380]    [Pg.142]    [Pg.4]    [Pg.164]    [Pg.124]    [Pg.16]    [Pg.178]    [Pg.572]    [Pg.978]    [Pg.271]    [Pg.8]    [Pg.216]    [Pg.27]    [Pg.80]    [Pg.151]    [Pg.4557]   
See also in sourсe #XX -- [ Pg.4 ]




SEARCH



Elementary steps

© 2024 chempedia.info