Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Elemental analysis atomic spectroscopy

Investigation of atomic spectra yields atomic energy levels. An important chemical application of atomic spectroscopy is in elemental analysis. Atomic absorption spectroscopy and emission spectroscopy are used for rapid, accurate quantitative analysis of most metals and some nonmetals, and have replaced the older, wet methods of analysis in many applications. One compares the intensity of a spectral line of the element being analyzed with a standard line of known intensity. In atomic absorption spectroscopy, a flame is used to vaporize the sample in emission spectroscopy, one passes a powerful electric discharge through the sample or uses a flame to produce the spectrum. Atomic spectroscopy is used clinically in the determination of Ca, Mg, K, Na, and Pb in blood samples. For details, see Robinson. [Pg.70]

Characteristic Masses for Identification of Additional Organic Pollutants (Not Listed in the Text) by GC/MS Volatility of Some Additional Organic Substances (Not Listed in Text) for Purge and Trap Analysis Analysis of Elements by Atomic Spectroscopy ... [Pg.6]

APPENDIX G ANALYSIS OF ELEMENTS BY ATOMIC SPECTROSCOPY AN OVERVIEW... [Pg.432]

Analysis of Elements by Atomic Spectroscopy An Overview (Continued)... [Pg.433]

Particle composition is far more difficult to evaluate. Bulk elemental analysis [atomic absorption spectroscopy (AA) or inductively coupled plasma mass spectrometry (ICP-MS) are most common for metals] is useful in confirming the overall bimetallic composition of the sample, but provides no information regarding individual particles. Microscopy techniques, particularly Energy Dispersive Spectroscopy (EDS), has supported the assertion that bimetallic DENs are bimetallic nanoparticles, rather than a physical mixture of monometallics [16]. Provided the particle density is low... [Pg.104]

Atomic spectroscopy is employed for the qualitative and quantitative determination of around 70 elements primarily for the analysis of a wide range of metals (often for trace analysis). Atomic spectroscopy can provide information regarding the identity and concentration of atoms in a sample irrespective of how these atoms are combined. In contrast, molecular spectroscopy gives qualitative and quantitative information about the molecules (or particular functional groups present in molecules) in a sample. [Pg.300]

Historically important in the development of modern atomic theory was the recognition that although polyatomic molecules show more or less broad bands of absorption and emission in the visible and ultraviolet regions of the spectrum, the characteristic light absorption or emission by individual atoms occurs at fairly narrow lines of the spectrum, which correspond to sharply defined wavelengths. The line spectrum of each element is so uniquely characteristic of that element that atomic spectroscopy can be used for precise elementary analysis of many types of chemically complex materials. [Pg.107]

Part 1 Chemistry A Practical Subje d , deals with the common techniques used to prepare, purify and identify chemical compounds. It explains how to plan the preparation of a compound. The separation methods — distillation, recrystallization, thin-layer and column chromatography — are introduced. There is also a discussion of identification by elemental analysis, atomic absorption spectroscopy and mass spectrometry. [Pg.122]

Other relevant techniques are the Energy Dispersive X-ray Spectroscopy (EDX), to get information about the elemental analysis. Atomic Force Microscopy (AFM) for the topology and surface structure analysis, etc. [Pg.266]

Multielemental Analysis Atomic emission spectroscopy is ideally suited for multi-elemental analysis because all analytes in a sample are excited simultaneously. A scanning monochromator can be programmed to move rapidly to an analyte s desired wavelength, pausing to record its emission intensity before moving to the next analyte s wavelength. Proceeding in this fashion, it is possible to analyze three or four analytes per minute. [Pg.436]

Chemical Properties. Elemental analysis, impurity content, and stoichiometry are determined by chemical or iastmmental analysis. The use of iastmmental analytical methods (qv) is increasing because these ate usually faster, can be automated, and can be used to determine very small concentrations of elements (see Trace AND RESIDUE ANALYSIS). Atomic absorption spectroscopy and x-ray fluorescence methods are the most useful iastmmental techniques ia determining chemical compositions of inorganic pigments. Chemical analysis of principal components is carried out to determine pigment stoichiometry. Analysis of trace elements is important. The presence of undesirable elements, such as heavy metals, even in small amounts, can make the pigment unusable for environmental reasons. [Pg.4]

Naiiow-line uv—vis spectia of free atoms, corresponding to transitions ia the outer electron shells, have long been employed for elemental analysis usiag both atomic absorption (AAS) and emission (AES) spectroscopy (159,160). Atomic spectroscopy is sensitive but destmctive, requiring vaporization and decomposition of the sample iato its constituent elements. Some of these techniques are compared, together with mass spectrometry, ia Table 4 (161,162). [Pg.317]

X-rays provide an important suite of methods for nondestmctive quantitative spectrochemical analysis for elements of atomic number Z > 12. Spectroscopy iavolving x-ray absorption and emission (269—273) is discussed hereia. X-ray diffraction and electron spectroscopies such as Auger and electron spectroscopy for chemical analysis (esca) or x-ray photoelectron spectroscopy are discussed elsewhere (see X-raytechnology). [Pg.320]

Diazoalkanes are u.seful is precursors to ruthenium and osmium alkylidene porphyrin complexes, and have also been investigated in iron porphyrin chemistry. In an attempt to prepare iron porphyrin carbene complexes containing an oxygen atom on the /(-carbon atom of the carbene, the reaction of the diazoketone PhC(0)C(Ni)CH3 with Fe(TpCIPP) was undertaken. A low spin, diamagnetic carbene complex formulated as Fe(TpCIPP)(=C(CH3)C(0)Ph) was identified by U V-visible and fI NMR spectroscopy and elemental analysis. Addition of CF3CO2H to this rapidly produced the protonated N-alkyl porphyrin, and Bit oxidation in the presence of sodium dithionitc gave the iron(II) N-alkyl porphyrin, both reactions evidence for Fe-to-N migration processes. ... [Pg.262]

In this chapter we have limited ourselves to the most common techniques in catalyst characterization. Of course, there are several other methods available, such as nuclear magnetic resonance (NMR), which is very useful in the study of zeolites, electron spin resonance (ESR) and Raman spectroscopy, which may be of interest for certain oxide catalysts. Also, all of the more generic tools from analytical chemistry, such as elemental analysis, UV-vis spectroscopy, atomic absorption, calorimetry, thermogravimetry, etc. are often used on a routine basis. [Pg.166]

M. Cullen (ed.), Atomic Spectroscopy in Elemental Analysis, Blackwell Publishing, Oxford (2003). [Pg.677]

These new derivatives were isolated in good yields (60-94%) as high boiling liquids and were fully characterized by NMR spectroscopy (1H, 13C, and 11B) and elemental analysis. The proton NMR of the starting material 1 shows a well-resolved multiplet and quintet for the trimethylene bridge. Upon monosubstitution, however, three complex multiplets are observed, indicative of the unsymmetrical structures of these derivatives. Also, the nonequivalence of the N-C carbon atoms is clearly apparent in the 13C NMR spectra of 2-4. [Pg.387]

The material balance is consistent with the results obtained by OSA (S2+S4 in g/100 g). For oil A, the coke zone is very narrow and the coke content is very low (Table III). On the contrary, for all the other oils, the coke content reaches higher values such as 4.3 g/ 100 g (oil B), 2.3 g/ioo g (oil C), 2.5 g/ioo g (oil D), 2.4/100 g (oil E). These organic residues have been studied by infrared spectroscopy and elemental analysis to compare their compositions. The areas of the bands characteristic of C-H bands (3000-2720 cm-1), C=C bands (1820-1500 cm j have been measured. Examples of results are given in Fig. 4 and 5 for oils A and B. An increase of the temperature in the porous medium induces a decrease in the atomic H/C ratio, which is always lower than 1.1, whatever the oil (Table III). Similar values have been obtained in pyrolysis studies (4) Simultaneously to the H/C ratio decrease, the bands characteristics of CH and CH- groups progressively disappear. The absorbance of the aromatic C-n bands also decreases. This reflects the transformation by pyrolysis of the heavy residue into an aromatic product which becomes more and more condensed. Depending on the oxygen consumption at the combustion front, the atomic 0/C ratio may be comprised between 0.1 and 0.3 ... [Pg.415]

Elemental analysis at the trace or ultratrace level can be performed by a number of analytical techniques however, atomic spectroscopy remains... [Pg.14]

Elemental analysis can be performed at ultratrace levels with any atomic spectrometric technique and the final selection is based on the identity and the number of elements to be determined. The initial step that is common to all analyses by atomic spectroscopy is the generation of a homogeneous solution. [Pg.247]

All reagents and solvents that are used to prepare the sample for analysis should be ultrapure to prevent contamination of the sample with impurities. Plastic ware should be avoided since these materials may contain ultratrace elements that can be leached into the analyte solutions. Chemically cleaned glassware is recommended for all sample preparation procedures. Liquid samples can be analyzed directly or after dilution when the concentrations are too high. Remember, all analytical errors are multiplied by dilution factors therefore, using atomic spectroscopy to determine high concentrations of elements may be less accurate than classical gravimetric methods. [Pg.247]

On the basis of the preceding discussion, it should be obvious that ultratrace elemental analysis can be performed without any major problems by atomic spectroscopy. A major disadvantage with elemental analysis is that it does not provide information on element speciation. Speciation has major significance since it can define whether the element can become bioavailable. For example, complexed iron will be metabolized more readily than unbound iron and the measure of total iron in the sample will not discriminate between the available and nonavailable forms. There are many other similar examples and analytical procedures that must be developed which will enable elemental speciation to be performed. Liquid chromatographic procedures (either ion-exchange, ion-pair, liquid-solid, or liquid-liquid chromatography) are the best methods to speciate samples since they can separate solutes on the basis of a number of parameters. Chromatographic separation can be used as part of the sample preparation step and the column effluent can be monitored with atomic spectroscopy. This mode of operation combines the excellent separation characteristics with the element selectivity of atomic spectroscopy. AAS with a flame as the atom reservoir or AES with an inductively coupled plasma have been used successfully to speciate various ultratrace elements. [Pg.251]

Atomic spectroscopy is an excellent method of analysis for trace or ultratrace levels of many elements in the periodic table. The major disadvantage of all atomic spectroscopic methods is that they provide no information on the oxidation state of the element or its speciation. This disadvantage can be redressed by the use of selective reagents coupled... [Pg.251]

Analysis for atoms means that atomic spectroscopy is limited to the elements. In fact, the keyword for atomic spectroscopy is metals. The vast majority of methods involving atomic spectroscopy are methods for determining metals. [Pg.245]


See other pages where Elemental analysis atomic spectroscopy is mentioned: [Pg.374]    [Pg.964]    [Pg.18]    [Pg.84]    [Pg.248]    [Pg.137]    [Pg.332]    [Pg.319]    [Pg.322]    [Pg.58]    [Pg.22]    [Pg.291]    [Pg.297]    [Pg.625]    [Pg.59]    [Pg.28]    [Pg.348]    [Pg.3]    [Pg.234]    [Pg.235]    [Pg.240]    [Pg.242]    [Pg.247]    [Pg.249]    [Pg.94]   


SEARCH



Analysis spectroscopy

Atomic analyses

Atomic spectroscopy

Atomic spectroscopy (and elemental analysis)

Atomic spectroscopy analysis

Elemental analysis spectroscopy

© 2024 chempedia.info