Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electronics industry applications

Most of polymers are poor electrical conductors because of the absence of free electrons. Recently, polymeric composite materials have been synthesized as conductor materials by adding metallic fillers. The number of electrical and electronic industry applications of POCS is increasing. POCs are inherently insulators. The... [Pg.170]

It is widely applied in several branches of the electronics industry. Applications range from optical waveguides to coatings for resistors, from lenses for laser light pens to integrated circuits. [Pg.4]

Tantalum provides good thermal conductivity that, combined with its corrosion resistance, has made it the ideal choice for heat exchangers in acid processing equipment. It is superior to the nickel-based alloys in both these categories. Tantalum also develops a stable oxide that is useful in electronics industry applications. It has gained acceptance as a suitable material for mass spectrometer filaments, providing an alternative to rhenium, historically the only suitable material. Refer to Table 8.28 for additional information. ... [Pg.703]

Portable industrial PC with additional control electronics and application program... [Pg.775]

Thus far the importance of carbon cluster chemistry has been in the discovery of new knowl edge Many scientists feel that the earliest industrial applications of the fullerenes will be based on their novel electrical properties Buckminsterfullerene is an insulator but has a high electron affinity and is a superconductor in its reduced form Nanotubes have aroused a great deal of interest for their electrical properties and as potential sources of carbon fibers of great strength... [Pg.437]

Miscellaneous Applications. Ben2otrifluoride derivatives have been incorporated into polymers for different appHcations. 2,4-Dichloroben2otrifluoride or 2,3,5,6-tetrafluoroben2otrifluoride [651-80-9] have been condensed with bisphenol A [80-05-7] to give ben2otrifluoride aryl ether semipermeable gas membranes (336,337). 3,5-Diaminoben2otrifluoride [368-53-6] and aromatic dianhydrides form polyimide resins for high temperature composites (qv) and adhesives (qv), as well as in the electronics industry (338,339). [Pg.333]

Electronic Applications. The PGMs have a number of important and diverse appHcations in the electronics industry (30). The most widely used are palladium and mthenium. Palladium or palladium—silver thick-film pastes are used in multilayer ceramic capacitors and conductor inks for hybrid integrated circuits (qv). In multilayer ceramic capacitors, the termination electrodes are silver or a silver-rich Pd—Ag alloy. The internal electrodes use a palladium-rich Pd—Ag alloy. Palladium salts are increasingly used to plate edge connectors and lead frames of semiconductors (qv), as a cost-effective alternative to gold. In 1994, 45% of total mthenium demand was for use in mthenium oxide resistor pastes (see Electrical connectors). [Pg.173]

More than half of the elements in the Periodic Table react with silicon to form one or more silicides. The refractory metal and noble metal silicides ate used in the electronics industry. Silicon and ferrosilicon alloys have a wide range of applications in the iron and steel industries where they are used as inoculants to give significantly improved mechanical properties. Ferrosilicon alloys are also used as deoxidizers and as an economical source of silicon for steel and iron. [Pg.535]

There are two major types of power switches used today the bipolar power transistor (BJT) and the power MOSFET. The IGBT (integrated gate bipolar transistor) is used in the higher power industrial applications, such as 1 kW power supplies and electronic motor drives. The IBGT has a slower turn-off than does the MOSFET, so it is typically used for switching frequencies of less than 20 kHz. [Pg.63]

Another important application area for PSAs in the electronic industry focuses on the manufacturing, transport and assembly of electronic components into larger devices, such as computer disk drives. Due to the sensitivity of these components, contamination with adhesive residue, its outgassing products, or residue transferred from any liners used, needs to be avoided. Cleanliness of the whole tape construction becomes very critical, because residuals like metal ions, surfactants, halogens, silicones, and the like can cause product failures of the electronic component or product. Due to their inherent tackiness, acrylic PSAs are very attractive for this type of application. Other PSAs can be used as well, but particular attention has to be given to the choice of tackifier or other additives needed in the PSA formulation. The choice of release liner also becomes very critical because of the concern about silicone transfer to the adhesive, which may eventually contaminate the electronic part. [Pg.520]

Common applications for transfer tapes include the assembly of membrane switches used in the electronic industry, the attachment of face plates to appliances and other equipment, the assembly of automotive displays in the in.strument cluster, and the assembly of displays, such as touch screens for computers and teller machines. Fig. 18 pictures the use of a transfer tape adhesive in the assembly of a membrane switch. [Pg.521]

Many applications of novolacs are found in the electronics industry. Examples include microchip module packaging, circuit board adhesives, and photoresists for microchip etching. These applications are very sensitive to trace metal contamination. Therefore the applicable novolacs have stringent metal-content specifications, often in the low ppb range. Low level restrictions may also be applied to free phenol, acid, moisture, and other monomers. There is often a strong interaction between the monomers and catalysts chosen and attainment of low metals levels. These requirements, in combination with the high temperature requirements mentioned above, often dictate special materials be used for reactor vessel construction. Whereas many resoles can be processed in mild steel reactors, novolacs require special alloys (e.g. Inconel ), titanium, or glass for contact surfaces. These materials are very expensive and most have associated maintenance problems as well. [Pg.920]

Electronics cleaning - For most uses in the electronics industry, ozone-depleting solvents can be replaced easily and, often, economically. A wide choice of alternatives exists. If technical specifications do not require postsolder cleaning, noclean is the preferred technology. If cleaning is required, the use of water-soluble chemistry has generally proved to be reliable. There are however limitations, whereby water-soluble chemistry is not suitable for all applications. [Pg.37]

The modern electronic industry has played a very important role in the development of instrumentation based on physical-analytical methods As a result, a rapid boom in the fields of infrared, nuclear magnetic resonance (NMR), Raman, and mass spectroscopy and vapor-phase (or gas-liquid) chromatography has been observed. Instruments for these methods have become indispensable tools in the analytical treatment of fluonnated mixtures, complexes, and compounds The detailed applications of the instrumentation are covered later in this chapter. [Pg.1023]

The alkali metals form a homogeneous group of extremely reactive elements which illustrate well the similarities and trends to be expected from the periodic classification, as discussed in Chapter 2. Their physical and chemical properties are readily interpreted in terms of their simple electronic configuration, ns, and for this reason they have been extensively studied by the full range of experimental and theoretical techniques. Compounds of sodium and potassium have been known from ancient times and both elements are essential for animal life. They are also major items of trade, commerce and chemical industry. Lithium was first recognized as a separate element at the beginning of the nineteenth eentury but did not assume major industrial importance until about 40 y ago. Rubidium and caesium are of considerable academic interest but so far have few industrial applications. Francium, the elusive element 87, has only fleeting existence in nature due to its very short radioactive half-life, and this delayed its discovery until 1939. [Pg.68]

Analyzers especially equipped to handle noise are required for most industrial applications. There are at least three commercially available microprocessor-based analyzers capable of acquiring data below 600 cpm. These systems use special filters and data-acquisition techniques to separate real vibration frequencies from electronic... [Pg.700]

Applications Although a wide range of metals can be sputtered, the method is often commercially restricted by the low rate of deposition. Applications include the coating of insulating surfaces, e.g. of crystal vibrators, to render them electrically conducting, and the manufacture of some selenium rectifiers. The micro-electronics industry now makes considerable use of sputtering in the production of thin-film resistors and capacitors . ... [Pg.442]

Fig. 11-1. Schematic diagram of x-ray absorption and emission analysis with a fine-focus x-ray tube. The focus is obtained by the magnetic lens acting on the electron beam. (Courtesy of Cosslett, Duncumb, Long, and Nixon, Proceedings, Sixth Annual Conference on Industrial Applications of X-ray Analysis, Denver, Colo., 1957, page 329.)... Fig. 11-1. Schematic diagram of x-ray absorption and emission analysis with a fine-focus x-ray tube. The focus is obtained by the magnetic lens acting on the electron beam. (Courtesy of Cosslett, Duncumb, Long, and Nixon, Proceedings, Sixth Annual Conference on Industrial Applications of X-ray Analysis, Denver, Colo., 1957, page 329.)...
Other five-membered heteroaromatic compounds with electron-donor substituents, which have become interesting for industrial application during the last two decades, are the aminopyrazoles 12.62 and aminothiazoles 12.63 (see Schwander, 1982). [Pg.331]

One type of material that has transformed electronic displays is neither a solid nor a liquid, but something intermediate between the two. Liquid crystals are substances that flow like viscous liquids, but their molecules lie in a moderately orderly array, like those in a crystal. They are examples of a mesophase, an intermediate state of matter with the fluidity of a liquid and some of the molecular order of a solid. Liquid crystalline materials are finding many applications in the electronics industry because they are responsive to changes in temperature and electric fields. [Pg.325]

In this book, the CVD applications are classified by product functions such as electrical, opto-electrical, optical, mechanical and chemical. This classification corresponds roughly to the various segments of industry such as the electronic industry, the optical industry, the tool industry, and the chemical industry. CVD applications are also classified by product forms such as coatings, powders, fibers, monoliths, and composites. [Pg.30]


See other pages where Electronics industry applications is mentioned: [Pg.165]    [Pg.186]    [Pg.182]    [Pg.1759]    [Pg.165]    [Pg.168]    [Pg.165]    [Pg.186]    [Pg.182]    [Pg.1759]    [Pg.165]    [Pg.168]    [Pg.392]    [Pg.525]    [Pg.490]    [Pg.299]    [Pg.193]    [Pg.23]    [Pg.112]    [Pg.160]    [Pg.519]    [Pg.700]    [Pg.702]    [Pg.363]    [Pg.372]    [Pg.258]    [Pg.718]    [Pg.848]    [Pg.508]    [Pg.559]    [Pg.559]    [Pg.1141]    [Pg.26]    [Pg.195]   
See also in sourсe #XX -- [ Pg.490 ]




SEARCH



Application in Hi-Tech Electronics Industry

Application in electronics industry

Electron applications

Electronics applications

Electronics industry

Industrial electronics

© 2024 chempedia.info