Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrodes temperature coefficients

Ideally a standard cell is constmcted simply and is characterized by a high constancy of emf, a low temperature coefficient of emf, and an emf close to one volt. The Weston cell, which uses a standard cadmium sulfate electrolyte and electrodes of cadmium amalgam and a paste of mercury and mercurous sulfate, essentially meets these conditions. The voltage of the cell is 1.0183 V at 20°C. The a-c Josephson effect, which relates the frequency of a superconducting oscillator to the potential difference between two superconducting components, is used by NIST to maintain the unit of emf. The definition of the volt, however, remains as the Q/A derivation described. [Pg.20]

Atomic number Atomic weight Crystal structure Melting Density Thermal Electrical resistivity (at 20°C) Temperature coefficient of resistivity Specific Thermal Standard electrode potential Thermal neutron absorption cross-section. [Pg.882]

From Fig. 10.40 it will be seen that contact between the electrolyte (soil or water) and the copper-rod electrode is by porous plug. The crystals of CUSO4 maintain the copper ion activity at a constant value should the halfcell become polarised during measurements. The temperature coefficient of such a cell is extremely low, being of the order of 1 x 10" V/°C and can thus be ignored for all practical purposes. To avoid errors due to polarisation effects, it is necessary to restrict the current density on the copper rod to a... [Pg.245]

The diffusion current Id depends upon several factors, such as temperature, the viscosity of the medium, the composition of the base electrolyte, the molecular or ionic state of the electro-active species, the dimensions of the capillary, and the pressure on the dropping mercury. The temperature coefficient is about 1.5-2 per cent °C 1 precise measurements of the diffusion current require temperature control to about 0.2 °C, which is generally achieved by immersing the cell in a water thermostat (preferably at 25 °C). A metal ion complex usually yields a different diffusion current from the simple (hydrated) metal ion. The drop time t depends largely upon the pressure on the dropping mercury and to a smaller extent upon the interfacial tension at the mercury-solution interface the latter is dependent upon the potential of the electrode. Fortunately t appears only as the sixth root in the Ilkovib equation, so that variation in this quantity will have a relatively small effect upon the diffusion current. The product m2/3 t1/6 is important because it permits results with different capillaries under otherwise identical conditions to be compared the ratio of the diffusion currents is simply the ratio of the m2/3 r1/6 values. [Pg.597]

Equation (32) suffers from the same shortcomings as Eq. (27). In particular, d/dT must be known independently for the same metal sample as the one used as an electrode. Moreover, in view of the crystal-face specificity of ff=o, its temperature coefficient is also expected to depend on the crystallographic orientation. Being a differential quantity, dEa=JdT is an even more delicate experimental quantity than Eaa0 itself. [Pg.24]

A typical set of experimental data290a,290b is shown in Fig. 11. All measurements converge to the value measured by Grahame.286 At present, the of Hg in water can be confidently indicated5 as -0.433 0.001 V (SCE), i.e., -0.192 0.001 V (SHE). The residual uncertainty is related to the unknown liquid junction potential at the boundary with the SCE, which is customarily used as a reference electrode. The temperature coefficient of of the Hg/H20 interface has been measured and its significance discussed.7,106,1 8,291... [Pg.57]

The entropy of formation of the interface was calculated from the temperature coefficient of the interfacial tension.304 The entropy of formation has been found to increase with the nature of the electrolyte in the same sequence as the single cation entropy in DMSO.108, 09,329 The entropy of formation showed a maximum at negative charges. The difference in AS between the maximum and the value at ff=ocan be taken as a measure of the specific ordering of the solvent at the electrode/solution interface. Data 108,109304314 have shown that A(AS) decreases in the sequence NMF > DMSO > DMF > H90 > PC > MeOH. [Pg.61]

The dependence of the electrical double-layer parameters of pc-Cd on temperature (0 to 85 °C) has been studied647,648 in H2O + KF solutions. The Emin depends slightly on T, the temperature coefficient BEmiri/dT being 0.15 mV K"1. C,-at cr < -0.09 C m 2has been found to decrease as the temperature increases. C, rises if a decreases and at a = 0 the inner-layer temperature coefficient BCt/BT is equal to 0.05 8//F cm-2 K 1. It has been pointed out that the intersection point of Ch a curves at various temperatures lies at a less negative a than the charge at which the C a curves have the minimum value. The same is the case with pc-Pb electrodes,649 but for Hg/H20 the opposite is observed.305... [Pg.104]

Tafel plots, during electrode polymerization, 316 Technology of electrochemical polymer formation, 427 Temperature coefficient and the interfacial parameter, 183 and the potential of zero charge, 182 of potential of zero charge as a function of crystal phase, 87... [Pg.643]

Bet de Bethune, A.J., Swendeman Loud, N.A. Standard Aqueous Electrode Potentials and Temperature Coefficients at 25 °C, Skokie C.A. Hampel, 1964. [Pg.25]

These relationships can be used to obtain thermodynamic data otherwise difficult to get. Vice versa they can be used to calculate the temperature coefficient of a cell voltage respectively an electrode potential based on known thermodynamic data. [Pg.411]

As the temperature is varied, the Galvani potentials of all interfaces will change, and we cannot relate the measured value of d"S dT to the temperature coefficient of Galvani potential for an individual electrode. The temperature coefficient of electrode potential probably depends on the temperature coefficient of Galvani potential for the reference electrode and hence is not a property of the test electrode alone. [Pg.51]

The Gibbs-Helmholtz equation also links the temperature coefficient of Galvani potential for individual electrodes to energy effects or entropy changes of the electrode reactions occurring at these electrodes. However, since these parameters cannot be determined experimentally for an isolated electrode reaction (this is possible only for the full current-producing reaction), this equation cannot be used to calculate this temperature coefficient. [Pg.51]

We might try to measure the temperature coefficient of the Galvani potential for an individual electrode under nonisothermal conditions then only the temperature of the test electrode would be varied, while the reference electrode remains at a constant temperature and retains a constant value of Galvani potential (Fig. 3.2). [Pg.51]

Thus, the temperature coefficient of Galvanic potential of an individual electrode can be neither measured nor calculated. Measured values of the temperature coefficients of electrode potentials depend on the reference electrode employed. For this reason a special scale is used for the temperature coefficients of electrode potential It is assumed as a convention that the temperature coefficient of potential of the standard hydrogen electrode is zero in other words, it is assumed that the value of Hj) is zero at all temperatures. By measuring the EMF under isothermal conditions we actually compare the temperature coefficient of potential of other electrodes with that of the standard hydrogen electrode. [Pg.52]

Because of solubility changes, the saturated calomel RE has a large temperature coefficient (0.65 mV/K). Its main advantages are ease of preparation (an excess of KCl is added to the solution) and low values of diffusion potential at interfaces with other solutions (see Section 5.2). The potentials of calomel REs can be reproduced to 0.1 mV. These electrodes are very convenient for measurements in neutral solutions (particularly chloride solutions). [Pg.194]

According to Eq. (14.2), the activation energy can be determined from the temperature dependence of the reaction rate constant. Since the overall rate constant of an electrochemical reaction also depends on potential, it must bemeasured at constant values of the electrode s Galvani potential. However, as shown in Section 3.6, the temperature coefficients of Galvani potentials cannot be determined. Hence, the conditions under which such a potential can be kept constant while the temperature is varied are not known, and the true activation energies of electrochemical reactions, and also the true values of factor cannot be measured. [Pg.242]

This chapter deals with ISE construction, their characteristic properties such as selectivity coefficient, response time, temperature coefficient and drift, as well as electrode calibration and composite sensors containing ISEs. [Pg.63]

The temperature coefficient of the ISE potential has received relatively little attention. As follows from (3.1.7), the constant term (the ISE standard potential), the determinand and interferent activity coefficients and the selectivity coefficient, liquid-junction potentials and, of course, also the RTIZfF coefficient, depend on the temperature [118]. When the internal reference electrode and the reference electrode in the test solution are identical, the interferent activity sufficiently low and the liquid-j unction potentials negligible, then the constant term depends on the determinand activity in the electrode internal solution alone and thus the temperature coefficient of the measured EMV depends only on the temperature coefficient of the determinand activity coefficient and on the/ 77z,F coefficient. Measuring instruments are usually... [Pg.87]

The most frequency used calomel electrode is the saturated calomel electrode (SCE), in which the concentration of KCl is at saturation (about 3.5 M) (Eig. 5.6). The potential of the SCE, at 25°C, is 0.242 V versus NHE. SCE has a large temperature coefficient, however, making it less frequently used in some applications ... [Pg.66]

In an attempt to combine band-Uke charge carrier motion realized in an -inevitably fragile - crystalline FET structure with structural robustness and flexibility, Sakanoue and Sirringhaus [167] prepared FETs using spin coated films of 6,13-bis(triisopropylsilylethynyl)(TIPS)-pentacene films in contact with a perfluorinated, low dielectric-constant polymer gate electrode. The (linear) hole mobility at room temperature is 0.8 cm /V s with tendency of an apparent band-like negative temperature coefficient of the mobility (d/i/dT < 0). [Pg.49]

E° [equation (15.4)] is also referred to as the offset, the zero potential point, or the isopotential point, since theoretically it is defined as the pH that has no temperature dependence. Most pH electrode manufacturers design their isopotential point to be 0 mV at pH 7 to correspond with the temperature software in most pH meters. The offset potential is often displayed after calibration as an indication of electrode performance. Typical readings should be about 0 30 mV in a pH 7 buffer. In reality, E° is composed of several single potentials, each of which has a slight temperature coefficient. These potentials are sources of error in temperature compensation algorithms. [Pg.237]

The greatest impact of the Clark oxygen electrodes has been in medicine and physiology. (A schematic diagram of a catheter-size Clark electrode is shown in Fig. 7.7.) On the other hand, a temperature- and pressure-compensated Clark electrode for oceanographic measurements up to 600 ft has also been developed (Fatt, 1976). The normal temperature coefficient of the Clark electrode is 2%/°C... [Pg.212]

The standard electrode potential and its temperature coefficient are found in the literature.36 Kinetic parameter values were measured in-house for HOR,33 ORR,34 OER,35 and COR.12 22 Table 2 gives cell component materials and transport properties. The membrane and electrode proton conductivity in Table 2 are based on the measured membrane and electrode resistance,42,43 which is a strong function of relative humidity (RH). In what follows next, we will describe the... [Pg.53]

Bratsch, S.G. 1989. Standard electrode potentials and temperature coefficients in water at 298.15... [Pg.436]

Table 2.2 Temperature coefficients, dE/dT, at room temperature for common reference electrodes [6, 7]... Table 2.2 Temperature coefficients, dE/dT, at room temperature for common reference electrodes [6, 7]...
Reference electrode potentials change with temperature. Both electrochemical reactions (Nernstian thermodynamics) and chemical solubilities, e.g. of the inner reference electrode solution, are affected. Accordingly, the temperature coefficient, dE/dT (mV °C4), varies from one type of reference electrode to another. To minimise errors in potential readings the coefficient should be low and at least known. Examples of temperature coefficients are given in Table 2.2. [Pg.22]

In general a necessary part of a potentiometric measurement is the coupling of a reference electrode to the indicating electrode. The ideal reference electrode has a number of important characteristics (1) a reproducible potential, (2) a low-temperature coefficient, (3) the capacity to remain unpolarized when small currents are drawn, and (4) inertness to the sample solution. If the reference electrode must be prepared in the laboratory, a convenient and reproducible system is desirable. [Pg.35]

For most potentiometric measurements either the saturated calomel reference electrode or the silver/silver chloride reference electrode are used. These electrodes can be made compact, are easily produced, and provide reference potentials that do not vary more than a few millivolts. The discussion in Chapter 5 outlines their characteristics, preparation, and temperature coefficients. The silver/silver chloride electrode also finds application in nonaqueous titrations, although some solvents cause the silver chloride film to become soluble. Some have utilized reference electrodes in nonaqueous solvents that are based on zinc or silver couples. From our own experience, aqueous reference electrodes are as convenient for nonaqueous systems as are any of the prototypes that have been developed to date. When there is a need to rigorously exclude water, double-salt bridges (aqueous/nonaqueous) are a convenient solution. This is true even though they involve a liquid junction between the aqueous electrolyte system and the nonaqueous solvent system of the sample solution. The use of conventional reference electrodes does cause some difficulties if the electrolyte of the reference electrode is insoluble in the sample solution. Hence the use of a calomel electrode saturated with potassium chloride in conjunction with a sample solution that contains perchlorate ion can cause erratic measurements due to the precipitation of potassium perchlorate at the junction. Such difficulties normally can be eliminated by using a double junction that inserts another inert electrolyte solution between the reference electrode and the sample solution (e.g., a sodium chloride solution). [Pg.36]

Control of Temperature and Pressure. Diffusion coefficients in aqueous solution have a temperature coefficient of about +2% deg 1,42 which means that polarographic diffusion currents or voltammetric peak currents increase about 1-2% deg-1. The rates of follow-up chemical reactions of reactive species produced at the electrode surface depend even more strongly on temper-... [Pg.279]


See other pages where Electrodes temperature coefficients is mentioned: [Pg.22]    [Pg.15]    [Pg.22]    [Pg.15]    [Pg.466]    [Pg.383]    [Pg.518]    [Pg.78]    [Pg.331]    [Pg.332]    [Pg.603]    [Pg.615]    [Pg.23]    [Pg.51]    [Pg.193]    [Pg.276]    [Pg.282]    [Pg.9]    [Pg.518]    [Pg.427]    [Pg.11]    [Pg.199]   
See also in sourсe #XX -- [ Pg.49 ]




SEARCH



Open circuit electrode temperature coefficient

Reference-electrode potentials, temperature coefficients

Temperature coefficient

© 2024 chempedia.info