Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrochemical reaction currents

The technique of cyclic voltammetry or, more precisely, linear potential sweep chronoamperometry, is used routinely in aqueous electrochemistry to study the mechanisms of electrochemical reactions. Currently, cyclic voltammetry has become a very popular technique for initial electrochemical studies of new systems and has proven very useful in obtaining information about fairly complicated electrochemical reactions. There have been some reported applications of cyclic voltammetry for solid electrochemical systems. It is worth pointing out that, although the theory of cyclic voltammetry originally developed by Sevick, ° Randles, Delahay, ° and Srinivasan and Gileadi" and lucidly presented by Bard and Faulkner, is very well established and understood in aqueous electrochemistry, one must be cautious when applying this theory to solid electrolyte systems of the type described here, as some non-trivial refinements may be necessary. [Pg.165]

The most Important electrical phenomena in chemical sensing are electrical conductivity. Interfacial potentials (l.e., potentiometry), and electrochemical reaction currents (l.e, faradalc or amperometric methods). All depend on charge exchange and transport processes in some manner, and all have been active research areas in recent years. [Pg.8]

Equation (718) suggests that the momentary current recorded on the active layer-coated electrode of the pseudosupercapacitor is the sum of the doublelayer charging or discharging current ifi(E)) and the electrochemical reaction current Note that both currents are functions of the electrode... [Pg.290]

Some values for and (3 for electrochemical reactions of importance are given in table A2.4.6, and it can be seen that the exchange currents can be extremely dependent on the electrode material, particularly for more complex processes such as hydrogen oxidation. Many modem electrochemical studies are concerned with understanding the origin of tiiese differences in electrode perfomiance. [Pg.608]

This, of course, assumes a 100% current efficiency regarding metal dissolution, i.e. no other competitive electrochemical reactions occur. [Pg.2720]

Although the applied potential at the working electrode determines if a faradaic current flows, the magnitude of the current is determined by the rate of the resulting oxidation or reduction reaction at the electrode surface. Two factors contribute to the rate of the electrochemical reaction the rate at which the reactants and products are transported to and from the surface of the electrode, and the rate at which electrons pass between the electrode and the reactants and products in solution. [Pg.511]

Activation Processes. To be useful ia battery appHcations reactions must occur at a reasonable rate. The rate or abiUty of battery electrodes to produce current is determiaed by the kinetic processes of electrode operations, not by thermodynamics, which describes the characteristics of reactions at equihbrium when the forward and reverse reaction rates are equal. Electrochemical reaction kinetics (31—35) foUow the same general considerations as those of bulk chemical reactions. Two differences are a potential drop that exists between the electrode and the solution because of the electrical double layer at the electrode iaterface and the reaction that occurs at iaterfaces that are two-dimensional rather than ia the three-dimensional bulk. [Pg.511]

Redox flow batteries, under development since the early 1970s, are stUl of interest primarily for utility load leveling applications (77). Such a battery is shown schematically in Figure 5. Unlike other batteries, the active materials are not contained within the battery itself but are stored in separate tanks. The reactants each flow into a half-ceU separated one from the other by a selective membrane. An oxidation and reduction electrochemical reaction occurs in each half-ceU to generate current. Examples of this technology include the iron—chromium, Fe—Cr, battery (79) and the vanadium redox cell (80). [Pg.587]

There are other parallel electrochemical reactions that can occur at the electrodes within the cell, lowering the overall efficiency for CIO formation. Oxygen evolution accounts for about 1—3% loss in the current efficiency on noble metal-based electrodes in the pH range 5.5—6.5. [Pg.497]

In the electrolysis zone, the electrochemical reactions take place. Two basic electrode configurations are used (/) monopolar cells where the same cell voltage is appHed to all anode/cathode combinations and (2) bipolar cells where the same current passes through all electrodes (Eig. 4). To minimize the anodic oxidation of OCL , the solution must be quickly moved out of this zone to a reaction zone. Because the reaction to convert OCk to CIO (eq. [Pg.497]

The two dashed lines in the upper left hand corner of the Evans diagram represent the electrochemical potential vs electrochemical reaction rate (expressed as current density) for the oxidation and the reduction form of the hydrogen reaction. At point A the two are equal, ie, at equiUbrium, and the potential is therefore the equiUbrium potential, for the specific conditions involved. Note that the reaction kinetics are linear on these axes. The change in potential for each decade of log current density is referred to as the Tafel slope (12). Electrochemical reactions often exhibit this behavior and a common Tafel slope for the analysis of corrosion problems is 100 millivolts per decade of log current (1). A more detailed treatment of Tafel slopes can be found elsewhere (4,13,14). [Pg.277]

F r d ic Current. The double layer is a leaky capacitor because Faradaic current flows around it. This leaky nature can be represented by a voltage-dependent resistance placed in parallel and called the charge-transfer resistance. Basically, the electrochemical reaction at the electrode surface consists of four thermodynamically defined states, two each on either side of a transition state. These are (11) (/) oxidized species beyond the diffuse double layer and n electrons in the electrode and (2) oxidized species within the outer Helmholtz plane and n electrons in the electrode, on one side of the transition state and (J) reduced species within the outer Helmholtz plane and (4) reduced species beyond the diffuse double layer, on the other. [Pg.50]

In the presence of 6-iodo-l-phenyl-l-hexyne, the current increases in the cathodic (negative potential going) direction because the hexyne catalyticaHy regenerates the nickel(II) complex. The absence of the nickel(I) complex precludes an anodic wave upon reversal of the sweep direction there is nothing to reduce. If the catalytic process were slow enough it would be possible to recover the anodic wave by increasing the sweep rate to a value so fast that the reduced species (the nickel(I) complex) would be reoxidized before it could react with the hexyne. A quantitative treatment of the data, collected at several sweep rates, could then be used to calculate the rate constant for the catalytic reaction at the electrode surface. Such rate constants may be substantially different from those measured in the bulk of the solution. The chemical and electrochemical reactions involved are... [Pg.55]

At open-circuit, the current in the cell is 2ero, and species in adjoining phases are in equilibrium. Eor example, the electrochemical potential of electrons in phases d and P are identical. Furthermore, the two electrochemical reactions are equilibrated. Thus,... [Pg.62]

In general, according to Eq. (2-10), two electrochemical reactions take place in electrolytic corrosion. In the experimental arrangement in Fig. 2-3, it is therefore not the I(U) curve for one reaction that is being determined, but the total current-potential curve of the mixed electrode, E,. Thus, according to Eq. (2-10), the total potential curve involves the superposition of both partial current-potential curves ... [Pg.44]

An electrochemical reaction is said to be polarized or retarded when it is limited by various physical and chemical factors. In other words, the reduction in potential difference in volts due to net current flow between the two electrodes of the corrosion cell is termed polarization. Thus, the corrosion cell is in a state of nonequilibrium due to this polarization. Figure 4-415 is a schematic illustration of a Daniel cell. The potential difference (emf) between zinc and copper electrodes is about one volt. Upon allowing current to flow through the external resistance, the potential difference falls below one volt. As the current is increased, the voltage continues to drop and upon completely short circuiting (R = 0, therefore maximum flow of current) the potential difference falls toward about zero. This phenomenon can be plotted as a polarization diagram shown in Figure 4-416. [Pg.1262]

For simplicity a cell consisting of two identical electrodes of silver immersed in silver nitrate solution will be considered first (Fig. 1.20a), i.e. Agi/AgNOj/Ag,. On open circuit each electrode will be at equilibrium, and the rate of transfer of silver ions from the metal lattice to the solution and from the solution to the metal lattice will be equal, i.e. the electrodes will be in a state of dynamic equilibrium. The rate of charge transfer, which may be regarded as either the rate of transfer of silver cations (positive charge) in one direction, or the transfer of electrons (negative charge) in the opposite direction, in an electrochemical reaction is the current I, so that for the equilibrium at electrode I... [Pg.77]

Similarly, all points within a metal, which consists of an ordered rigid lattice of metal cations surrounded by a cloud of free electrons, are electrically neutral. Transport of charge through a metal under the influence of a potential difference is due to the flow of free electrons, i.e. to electronic conduction. The simultaneous transport of electrons through a metal, transport of ions through a solution and the transfer of electrons at the metal/solution interfaces constitute an electrochemical reaction, in which the electrode at which positive current flows from the solution to the electrode is the cathode (e.g. M (aq.) + ze M) and the electrode at which positive flows from it to the solution (e.g. M - M (aq.) -)- ze) is the anode. [Pg.1168]

Current Efficiency the ratio of the rate of a specified electrochemical reaction expressed as a current or current density (anodic or cathodic) to the total current or current density (anodic or cathodic) flowing. It is usually expressed as a percentage. [Pg.1366]

Exchange Current Density (/ o) the rate of exchange of electrons (expressed as a current per unit area) between the two components of a single electrochemical reaction when the reaction is in equilibrium. The exchange current density flows only at the equilibrium potential. [Pg.1368]

Electrical methods of analysis (apart from electrogravimetry referred to above) involve the measurement of current, voltage or resistance in relation to the concentration of a certain species in solution. Techniques which can be included under this general heading are (i) voltammetry (measurement of current at a micro-electrode at a specified voltage) (ii) coulometry (measurement of current and time needed to complete an electrochemical reaction or to generate sufficient material to react completely with a specified reagent) (iii) potentiometry (measurement of the potential of an electrode in equilibrium with an ion to be determined) (iv) conductimetry (measurement of the electrical conductivity of a solution). [Pg.7]

In normal battery operation several electrochemical reactions occur on the nickel hydroxide electrode. These are the redox reactions of the active material, oxygen evolution, and in the case of nickel-hydrogen and nickel-metal hydride batteries, hydrogen oxidation. In addition there are parasitic reactions such as the corrosion of nickel current collector materials and the oxidation of organic materials from separators. The initial reaction in the corrosion process is the conversion of Ni to Ni(OH)2. [Pg.145]

The high potential of the positive electrode, on the other hand, does not allow the use of conducting metals like copper within the positive electrode. Lead can be used instead due to its passive properties caused by a (PbO 2) layer that largely protects the underlying material, but conducts the electronic current and so allows electrochemical reactions at its surface. [Pg.154]


See other pages where Electrochemical reaction currents is mentioned: [Pg.642]    [Pg.67]    [Pg.290]    [Pg.642]    [Pg.887]    [Pg.642]    [Pg.67]    [Pg.290]    [Pg.642]    [Pg.887]    [Pg.204]    [Pg.204]    [Pg.1685]    [Pg.577]    [Pg.130]    [Pg.403]    [Pg.511]    [Pg.497]    [Pg.277]    [Pg.50]    [Pg.65]    [Pg.66]    [Pg.2410]    [Pg.27]    [Pg.42]    [Pg.465]    [Pg.295]    [Pg.116]    [Pg.232]    [Pg.241]    [Pg.157]   
See also in sourсe #XX -- [ Pg.307 ]




SEARCH



Batteries Use Electrochemical Reactions to Produce a Ready Supply of Electric Current

Controlling of the Electrochemical Reaction Rate by Electrode Potential and Cell Current

Electrochemical reactions

Limiting current, electrochemical reactions

Limiting-current measurement electrochemical reactions used

Reaction current

© 2024 chempedia.info