Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrochemical reduction reactions

Being thermally decomposed onto the surface of carbon, this complex is expected to form very small catalytically active NiCo204 spinel centers. Thus, we have studied the catalytic activity of the products of pyrolysis at different temperatures toward two electrochemical reactions -reduction of oxygen in alkaline electrolyte and intercalation of lithium into carbons in aprotic electrolyte of Li-ion battery. To our knowledge, the catalytic effect of the metal complexes in the second reaction was not yet considered in the literature. [Pg.347]

In electroless deposition the two electrochemical reactions, reduction of oxidation of Redsoiution occur at the same electrode, at the same electrode-electrolyte interface [Eq. (8.2) and Fig. 8.1]. Thus, in electroless deposition there is a statistical division of the catalytic sites on the substrate into anodic and cathodic sites. Since these catalytic sites are part of the same piece of metal (substrate), there is a flow of electrons between these sites. [Pg.140]

M Halla, F., J. Pinson, and J. M. Saveant. The solvent as H-atom donor in organic electrochemical reactions. Reduction of aromatic halides. J. Am. Chem. Soc. 102, 1980 4120-4127. [Pg.199]

Although the applied potential at the working electrode determines if a faradaic current flows, the magnitude of the current is determined by the rate of the resulting oxidation or reduction reaction at the electrode surface. Two factors contribute to the rate of the electrochemical reaction the rate at which the reactants and products are transported to and from the surface of the electrode, and the rate at which electrons pass between the electrode and the reactants and products in solution. [Pg.511]

Neta.1 Ama.lga.ms. Alkali metal amalgams function in a manner similar to a mercury cathode in an electrochemical reaction (63). However, it is more difficult to control the reducing power of an amalgam. In the reduction of nitro compounds with an NH4(Hg) amalgam, a variety of products are possible. Aliphatic nitro compounds are reduced to the hydroxylamines, whereas aromatic nitro compounds can give amino, hydra2o, a2o, or a2oxy compounds. [Pg.263]

The first equation is an example of hydrolysis and is commonly referred to as chemical precipitation. The separation is effective because of the differences in solubiUty products of the copper(II) and iron(III) hydroxides. The second equation is known as reductive precipitation and is an example of an electrochemical reaction. The use of more electropositive metals to effect reductive precipitation is known as cementation. Precipitation is used to separate impurities from a metal in solution such as iron from copper (eq. 1), or it can be used to remove the primary metal, copper, from solution (eq. 2). Precipitation is commonly practiced for the separation of small quantities of metals from large volumes of water, such as from industrial waste processes. [Pg.562]

Redox flow batteries, under development since the early 1970s, are stUl of interest primarily for utility load leveling applications (77). Such a battery is shown schematically in Figure 5. Unlike other batteries, the active materials are not contained within the battery itself but are stored in separate tanks. The reactants each flow into a half-ceU separated one from the other by a selective membrane. An oxidation and reduction electrochemical reaction occurs in each half-ceU to generate current. Examples of this technology include the iron—chromium, Fe—Cr, battery (79) and the vanadium redox cell (80). [Pg.587]

Ca.rhothermic Reduction. Sihcon carbide is commercially produced by the electrochemical reaction of high grade siUca sand (quartz) and carbon in an electric resistance furnace. The carbon is in the form of petroleum coke or anthracite coal. The overall reaction is... [Pg.466]

Despite the considerable progress made in the few years in which anodic insertion/extraction films have been known, neither film compositions, film properties, nor electrochemical reactions are sufficientiy well characterized. There have been disagreements, as indicated for h-IrO and h-NiO in Table 2, as to whether is being extracted or OH inserted during coloration. The general problem is best illustrated by the important example of Pmssian blue. Early work (47—50) resulted in two different sets of equations for electrochromic reduction ... [Pg.158]

The thermodynamics of electrochemical reactions can be understood by considering the standard electrode potential, the potential of a reaction under standard conditions of temperature and pressure where all reactants and products are at unit activity. Table 1 Hsts a variety of standard electrode potentials. The standard potential is expressed relative to the standard hydrogen reference electrode potential in units of volts. A given reaction tends to proceed in the anodic direction, ie, toward the oxidation reaction, if the potential of the reaction is positive with respect to the standard potential. Conversely, a movement of the potential in the negative direction away from the standard potential encourages a cathodic or reduction reaction. [Pg.275]

The two dashed lines in the upper left hand corner of the Evans diagram represent the electrochemical potential vs electrochemical reaction rate (expressed as current density) for the oxidation and the reduction form of the hydrogen reaction. At point A the two are equal, ie, at equiUbrium, and the potential is therefore the equiUbrium potential, for the specific conditions involved. Note that the reaction kinetics are linear on these axes. The change in potential for each decade of log current density is referred to as the Tafel slope (12). Electrochemical reactions often exhibit this behavior and a common Tafel slope for the analysis of corrosion problems is 100 millivolts per decade of log current (1). A more detailed treatment of Tafel slopes can be found elsewhere (4,13,14). [Pg.277]

Hi) Electrochemical reactions and reactions with free electrons Electrochemical oxidation of 3-methyl-l-phenylpyrazole gave the 3-carboxylic acid whereas electrochemical reduction (Section 4.04.2.1.6(i)) of l,5-diphenyl-3-styrylpyrazole produced the A -pyrazoline (B-76MI40402) with concomitant reduction of the exocyclic double bond (343). [Pg.247]

Because silver, gold and copper electrodes are easily activated for SERS by roughening by use of reduction-oxidation cycles, SERS has been widely applied in electrochemistry to monitor the adsorption, orientation, and reactions of molecules at those electrodes in-situ. Special cells for SERS spectroelectrochemistry have been manufactured from chemically resistant materials and with a working electrode accessible to the laser radiation. The versatility of such a cell has been demonstrated in electrochemical reactions of corrosive, moisture-sensitive materials such as oxyhalide electrolytes [4.299]. [Pg.262]

Passivation—a reduction of the anodic reaction rate of an electrode involved in an electrochemical reaction, such as corrosion. [Pg.49]

An electrochemical reaction is said to be polarized or retarded when it is limited by various physical and chemical factors. In other words, the reduction in potential difference in volts due to net current flow between the two electrodes of the corrosion cell is termed polarization. Thus, the corrosion cell is in a state of nonequilibrium due to this polarization. Figure 4-415 is a schematic illustration of a Daniel cell. The potential difference (emf) between zinc and copper electrodes is about one volt. Upon allowing current to flow through the external resistance, the potential difference falls below one volt. As the current is increased, the voltage continues to drop and upon completely short circuiting (R = 0, therefore maximum flow of current) the potential difference falls toward about zero. This phenomenon can be plotted as a polarization diagram shown in Figure 4-416. [Pg.1262]

Reduction a chemical or electrochemical reaction in which a species gains... [Pg.1372]

Subsequent elegant work by Lambert and coworkers61 has shown that, while under UHV conditions the electropumped Na is indistinguishable from Na adsorbed by vacuum deposition, under electrochemical reaction conditions the electrochemically supplied Na can form surface compounds (e.g. Na nitrite/nitrate during NO reduction by CO, carbonate during NO reduction by C2FI4). These compounds (nitrates, carbonates) can be effectively decomposed via positive potential application. Furthermore the large dipole moment of Na ( 5D) dominates the UWr and O behaviour of the catalyst-electrode even when such surface compounds are formed. [Pg.254]

If components of the solution phase are prone to electrochemical reactions (e.g. reduction of dissolved oxygen, reduction of oxidising anions) their presence may also cause Faradaic reactions and the subsequent establishment of an electrode potential different from iipzc. [Pg.184]

The reduction of carbon dioxide is another of the basic electrochemical reactions that has been studied at modified electrodes. The reduction at Co or Ni phthalocyanine in acidic solution yields formic acid or carbon monoxide A very high selectiv-... [Pg.67]

The thermodynamic principles of the Cd-Te-water system are depicted in the Pourbaix diagram of Fig. 3.5 [82]. The corresponding electrochemical reactions of CdTe reduction and oxidation are shown in Table 3.1. [Pg.98]

In a similar way, electrochemistry may provide an atomic level control over the deposit, using electric potential (rather than temperature) to restrict deposition of elements. A surface electrochemical reaction limited in this manner is merely underpotential deposition (UPD see Sect. 4.3 for a detailed discussion). In ECALE, thin films of chemical compounds are formed, an atomic layer at a time, by using UPD, in a cycle thus, the formation of a binary compound involves the oxidative UPD of one element and the reductive UPD of another. The potential for the former should be negative of that used for the latter in order for the deposit to remain stable while the other component elements are being deposited. Practically, this sequential deposition is implemented by using a dual bath system or a flow cell, so as to alternately expose an electrode surface to different electrolytes. When conditions are well defined, the electrolytic layers are prone to grow two dimensionally rather than three dimensionally. ECALE requires the definition of precise experimental conditions, such as potentials, reactants, concentration, pH, charge-time, which are strictly dependent on the particular compound one wants to form, and the substrate as well. The problems with this technique are that the electrode is required to be rinsed after each UPD deposition, which may result in loss of potential control, deposit reproducibility problems, and waste of time and solution. Automated deposition systems have been developed as an attempt to overcome these problems. [Pg.162]

Electrochemical reactions only involving a change of charge of simple or complex ions but not any change in inner geometry are commonly called outer-sphere electron transfer reactions. For some time, the reduction and oxidation of simple and... [Pg.261]

Silver and gold, which are corrosion resistant in many solutions, are rather efficient catalysts for the cathodic reduction of oxygen and certain other reactions. Some sp-metals (mercury, tin, zinc) exhibit interesting catalytic properties for the cathodic reduction of CO2. Copper might be a very interesting material for a number of electrochemical reactions, but so far has not been examined thoroughly. [Pg.525]

Great promise exists in the use of graphitic carbons in the electrochemical synthesis of hydrogen peroxide [reaction (15.21)] and in the electrochemical reduction of carbon dioxide to various organic products. Considering the diversity in structures and surface forms of carbonaceous materials, it is difficult to formulate generalizations as to the influence of their chemical and electron structure on the kinetics and mechanism of electrochemical reactions occurring at carbon electrodes. [Pg.543]


See other pages where Electrochemical reduction reactions is mentioned: [Pg.102]    [Pg.102]    [Pg.1936]    [Pg.277]    [Pg.277]    [Pg.878]    [Pg.299]    [Pg.568]    [Pg.240]    [Pg.1014]    [Pg.1033]    [Pg.398]    [Pg.424]    [Pg.77]    [Pg.80]    [Pg.605]    [Pg.216]    [Pg.233]    [Pg.234]    [Pg.262]    [Pg.525]    [Pg.543]    [Pg.570]    [Pg.585]   
See also in sourсe #XX -- [ Pg.96 , Pg.100 , Pg.644 , Pg.650 , Pg.676 ]




SEARCH



Electrochemical applications oxygen reduction reaction

Electrochemical corrosion reduction reaction

Electrochemical reactions

Electrochemical reactions, reduction potentials

Electrochemical reduction

Oxidation-reduction reaction electrochemical cell

Oxygen reduction reaction electrochemical mass

© 2024 chempedia.info