Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclohexene aromatization

In contrast to proton shifts, carbon-13 shifts cannot be used as criteria for aromaticity (Section 3.1.3.10). No difference exists between aromatic (128.5 ppm for benzene) and comparable alkene carbon nuclei (127.5 ppm for cyclohexene). Aromatic ring carbon nuclei are practically not influenced by the ring current (Section 3.1.3.4), which makes up a deshielding of about 2 ppm and thus is small compared with other (e.g. steric) effects on carbon-13 shifts. [Pg.254]

Many 3d transition ions were supported on mesoporous silicas by substitution of Si from silica network. The studies have shown a high activity and selectivity of such catalysts in the oxidation of cyclohexene, aromatic hydrocarbons, phenols, and alcohols. Thus, V, Ti, Cr, Mn, Fe, Ni, and Co incorporated into MCM-41 materials showed activity in liquid-phase oxidation of styrene and benzene with hydrogen peroxide [15,29,79]. The best activity in the oxidation of benzene was obtained for Ti-MCM-41, while for the oxidation of styrene the most active were Cr-MCM-41 and CrNi-MCM-41. The activity of these catalysts decreased with an increase of the number of 3d electrons of the metal ions. Ti,... [Pg.487]

The condensation of cyclohexanol or cyclohexene is generally carried out in the presence of phosphoric acid, pyrophosphoric acid, or HY 2eohtes the aromatization of intermediate cyclohexyUiydroquinone [4197-75-5] (19) is realized in the presence of a dehydrogenation catalyst. [Pg.491]

Photolysis of pyridazine IV-oxide and alkylated pyridazine IV-oxides results in deoxygenation. When this is carried out in the presence of aromatic or methylated aromatic solvents or cyclohexane, the corresponding phenols, hydroxymethyl derivatives or cyclohexanol are formed in addition to pyridazines. In the presence of cyclohexene, cyclohexene oxide and cyclohexanone are generated. [Pg.12]

Vanadium pentafluoride replaces benzylic hydrogen by fluonne but also adds fluonne to the aromatic system, giving fluonnated cyclohexadienes and cyclohexenes [5] (equation 5)... [Pg.120]

Reduction of aromatic rings with lithium or calcium " in amines (instead of ammonia—called Benkeser reduction) proceeds further and cyclohexenes are obtained. It is thus possible to reduce a benzene ring, by proper choice of reagent, so that one, two, or all three double bonds are reduced. Lithium triethylborohy-dride (LiBEtsH) has also been used, to reduce pyridine derivatives to piperidine derivatives." ... [Pg.1012]

A first milestone was the development of a novel intramolecular Diels-Alder cyclization of terphenyl monomers 38 and 41, containing both 4-phenylbuta-dienyl and styryl functions. The formation of the [4-1-2] cyclization adducts 39 and 42 is followed by a simple aromatization of the cyclohexene moieties [59]. In this way, the phenylated, two-dimensional arylene structures, 40 and 43,... [Pg.185]

Treatment of aromatic aldehydes such as p-anisaldehyde with Zn-powder and l,2-bis(chlorodimethylsilyl)ethane 45 give Zn-carbene adducts such as 2096 which add readily to olefins such as cyclohexene [22, 26] or styrene [26] to give high yields of cyclopropanes such as 2097 and the oxide 47 [26]. Acetals such as 2098 react analogously with cyclohexene to afford the endo and exo cyclopropanes 2099 and 2100 [22, 27] (Scheme 13.11). [Pg.310]

The first example of acid catalysis appeared in a 1934 patent in which it is claimed that surface catalysts, particularly hydrosilicates of large surface area , known at that time under the trade name Tonsil, Franconit, Granisol, etc. lead to a smooth addition of the olefine to the molecule of the primary aromatic amine . Aniline and cyclohexene were reacted over Tonsil at 230-240°C to give, inter alia, the hydroamination product, N-cyclohexylaniline [47]. [Pg.94]

With aromatic carbonyls, oxetane formation appears to arise from the carbonyl triplet state, as evidenced by quenching studies. For example, benzaldehyde irradiated in the presence of cyclohexene yields products indicative of hydrogen abstraction reactions and an oxetane ... [Pg.98]

Likewise it is possible to differentiate between substituted and unsubstituted alicycles using inclusion formation with 47 and 48 only the unbranched hydrocarbons are accommodated into the crystal lattices of 47 and 48 (e.g. separation of cyclohexane from methylcyclohexane, or of cyclopentane from methylcyclopentane). This holds also for cycloalkenes (cf. cyclohexene/methylcyclohexene), but not for benzene and its derivatives. Yet, in the latter case no arbitrary number of substituents (methyl groups) and nor any position of the attached substituents at the aromatic nucleus is tolerated on inclusion formation with 46, 47, and 48, dependent on the host molecule (Tables 7 and 8). This opens interesting separation procedures for analytical purposes, for instance the distinction between benzene and toluene or in the field of the isomeric xylenes. [Pg.82]

Based on this information the preparation of enone was examined from the unhalogenated (VIII)(X=H). Deprotonation can be performed with n-butyl lithium in THF at 0-5 °C followed by treatment with 3-ethoxy cyclohexen-l-one, followed by an acid quench provides the same enone (XI). This deprotonation also avoids the cryogenic conditions required to prepare enone (XI) when the bromo analog is used. Pyridinium tribromide used for aromatization of enone (XI) to biaryl phenol (X) is an inexpensive reagents ( 80/kg). [Pg.225]

Under the same conditions, tricyclo[5.3.1.0]undecanes are accessible from 5-sub-stituted 2-cyclohexen-l-one as 2-370 with a shorter tether by one CH2-group. Recently, another Michael/Michael/aldol transformation was employed by Paulsen and coworkers to obtain access to the central aromatic core of compounds as 2-376 (Scheme 2.89) [206]. It is of value that such products are thought to act as cholesterol ester transfer protein (CETP) inhibitors, and the application of these drugs should prevent reduction of the HDL-cholesterol level and therefore reduce the risk of coronary heart diseases [207]. [Pg.107]

K (277°C) and 650°K are 0.63 and 103 atm,3 respectively. Above about 350°C the equilibrium constants for this type of reaction are such that the aromatic is always highly favored thermodynamically over the corresponding cycloalkane. Moreover, olefin which is itself capable of further dehydrogenation to an aromatic (e.g., cyclohexene) is never observed in significant amounts under isomerization conditions. [Pg.52]

Progress is being made in the search for catalysts to hydrogenate aromatic systems (see Section VII). This area is likely to become increasingly important if coal, which contains polyaromatic compounds, is utilized more for production of petrochemicals. Stereospecific production of fully m-C6D6H6 from perdeuterobenzene has been reported catalysts for selective hydrogenation of benzene to cyclohexene would be valuable. [Pg.389]

The decarbonylations, which do not appear to be affected by light, are reasonably selective with aromatic aldehydes, yielding the expected product however, significant amounts of other products are obtained with non-aromatic substrates (e.g. cyclohexane-aldehyde gives methylcyclopentane and small amounts of n-hexane, as well as the expected cyclohexane and cyclohexen-4-al gives both cyclohexene and cyclohexane). Indeed, the unexpected products perhaps provided a major clue to an understanding of the reaction mechanism(s) involved. [Pg.244]

Chemical catalysts for transfer hydrogenation have been known for many decades [2e]. The most commonly used are heterogeneous catalysts such as Pd/C, or Raney Ni, which are able to mediate for example the reduction of alkenes by dehydrogenation of an alkane present in high concentration. Cyclohexene, cyclo-hexadiene and dihydronaphthalene are commonly used as hydrogen donors since the byproducts are aromatic and therefore more difficult to reduce. The heterogeneous reaction is useful for simple non-chiral reductions, but attempts at the enantioselective reaction have failed because the mechanism seems to occur via a radical (two-proton and two-electron) mechanism that makes it unsuitable for enantioselective reactions [2 c]. [Pg.1216]

The titanosilicate version of UTD-1 has been shown to be an effective catalyst for the oxidation of alkanes, alkenes, and alcohols (77-79) by using peroxides as the oxidant. The large pores of Ti-UTD-1 readily accommodate large molecules such as 2,6-di-ferf-butylphenol (2,6-DTBP). The bulky 2,6-DTBP substrate can be converted to the corresponding quinone with activity and selectivity comparable to the mesoporous catalysts Ti-MCM-41 and Ti-HMS (80), where HMS = hexagonal mesoporous silica. Both Ti-UTD-1 and UTD-1 have also been prepared as oriented thin films via a laser ablation technique (81-85). Continuous UTD-1 membranes with the channels oriented normal to the substrate surface have been employed in a catalytic oxidation-separation process (82). At room temperature, a cyclohexene-ferf-butylhydroperoxide was passed through the membrane and epoxidation products were trapped on the down stream side. The UTD-1 membranes supported on metal frits have also been evaluated for the separation of linear paraffins and aromatics (83). In a model separation of n-hexane and toluene, enhanced permeation of the linear alkane was observed. Oriented UTD-1 films have also been evenly coated on small 3D objects such as glass and metal beads (84, 85). [Pg.234]

The well-known Diels-Alder reaction [95,104-106] is a standard method for forming substituted cyclohexenes through the thermally allowed 4s + 2s cycloaddition of alkenes and dienes. In particular, the reaction between ethene and 1,3-butadiene to yield cyclohexene is the prototype of a Diels-Alder reaction (Scheme 28.4). It is now well recognized that this reaction takes place via a synchronous and concerted mechanism through an aromatic boatlike TS [105]. [Pg.427]

The hydrogenation of simple alkenes, such as hexene, cyclohexene, cyclo-hexadiene and benzene, has been extensively studied using biphasic, alternative solvent protocols. These hydrocarbon substrates are more difficult to hydrogenate compared to substrates with electron withdrawing groups. Benzene and alkyl substituted aromatic compounds are considerably more difficult to hydrogenate... [Pg.161]

With the purpose of understanding the crosslinking mechanism of 1,2-polybutadiene with aromatic nitrene, we studied the reaction of phenylnitrene with unsaturated olefine monomers such as 3-methyl-1-butene and cyclohexene. These monomers are structually similar to a unit segment of 1,2-polybutadiene. [Pg.188]


See other pages where Cyclohexene aromatization is mentioned: [Pg.124]    [Pg.46]    [Pg.58]    [Pg.124]    [Pg.58]    [Pg.124]    [Pg.46]    [Pg.58]    [Pg.124]    [Pg.58]    [Pg.167]    [Pg.1326]    [Pg.58]    [Pg.511]    [Pg.180]    [Pg.215]    [Pg.42]    [Pg.692]    [Pg.1010]    [Pg.1511]    [Pg.132]    [Pg.881]    [Pg.180]    [Pg.26]    [Pg.67]    [Pg.225]    [Pg.102]    [Pg.263]    [Pg.75]    [Pg.85]    [Pg.353]    [Pg.144]    [Pg.229]    [Pg.233]    [Pg.163]   
See also in sourсe #XX -- [ Pg.62 ]




SEARCH



Cyclohexenes reaction + aromatics

© 2024 chempedia.info