Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermally allowed

The direct connection of rings A and D at C l cannot be achieved by enamine or sul> fide couplings. This reaction has been carried out in almost quantitative yield by electrocyclic reactions of A/D Secocorrinoid metal complexes and constitutes a magnificent application of the Woodward-Hoffmann rules. First an antarafacial hydrogen shift from C-19 to C-1 is induced by light (sigmatropic 18-electron rearrangement), and second, a conrotatory thermally allowed cyclization of the mesoionic 16 rc-electron intermediate occurs. Only the A -trans-isomer is formed (A. Eschenmoser, 1974 A. Pfaltz, 1977). [Pg.262]

The transition state for such processes is represented as two interacting allyl fragments. When the process is suprafacial in both groups, an aromatic transition state results, and the process is thermally allowed. Usually, a chairlike transition state is involved, but a boatlike conformation is also possible. [Pg.622]

Reaction type Number of electrons Thermally allowed Photochemically allowed... [Pg.363]

UV irradiation. Indeed, thermal reaction of 1-phenyl-3,4-dimethylphosphole with (C5HloNH)Mo(CO)4 leads to 155 (M = Mo) and not to 154 (M = Mo, R = Ph). Complex 155 (M = Mo) converts into 154 (M = Mo, R = Ph) under UV irradiation. This route was confirmed by a photochemical reaction between 3,4-dimethyl-l-phenylphosphole and Mo(CO)6 when both 146 (M = Mo, R = Ph, R = R = H, R = R" = Me) and 155 (M = Mo) resulted (89IC4536). In excess phosphole, the product was 156. A similar chromium complex is known [82JCS(CC)667]. Complex 146 (M = Mo, R = Ph, r2 = R = H, R = R = Me) enters [4 -H 2] Diels-Alder cycloaddition with diphenylvinylphosphine to give 157. However, from the viewpoint of Woodward-Hoffmann rules and on the basis of the study of UV irradiation of 1,2,5-trimethylphosphole, it is highly probable that [2 - - 2] dimers are the initial products of dimerization, and [4 - - 2] dimers are the final results of thermally allowed intramolecular rearrangement of [2 - - 2] dimers. This hypothesis was confirmed by the data obtained from the reaction of 1-phenylphosphole with molybdenum hexacarbonyl under UV irradiation the head-to-tail structure of the complex 158. [Pg.144]

Upon treatment of a divinyl ketone 1 with a protic acid or a Lewis acid, an electrocyclic ring closure can take place to yield a cyclopentenone 3. This reaction is called the Nazarov cyclization Protonation at the carbonyl oxygen of the divinyl ketone 1 leads to formation of a hydroxypentadienyl cation 2, which can undergo a thermally allowed, conrotatory electrocyclic ring closure reaction to give a cyclopentenyl cation 4. Through subsequent loss of a proton a mixture of isomeric cyclopentenones 5 and 6 is obtained ... [Pg.207]

Scheme 2. Thermally allowed 8 n electron and 6 k electron electro-cyclizations (Woodward-Hoffmann rules). Scheme 2. Thermally allowed 8 n electron and 6 k electron electro-cyclizations (Woodward-Hoffmann rules).
H-Azepines 1 undergo a temperature-dependent dimerization process. At low temperatures a kinetically controlled, thermally allowed [6 + 4] 7t-cycloaddition takes place to give the un-symmetrical e.w-adducts, e.g. 2.231-248-249 At higher temperatures (100-200°C) the symmetrical, thermodynamically favored [6 + 6] rc-adducts, e.g. 3, are produced. These [6 + 6] adducts probably arise by a radical process, since a concerted [6 + 6] tt-cycloaddition is forbidden on orbital symmetry grounds, as is a thermal [l,3]-sigmatropic C2 —CIO shift of the unsym-metrical [6 + 4] 7t-dimer. [Pg.186]

The higher strain energy in thiirene dioxides (19) compared to thiirane dioxides (17) is obvious. Yet, the elimination of sulfur dioxide from the latter is significantly faster than one would expect for a thermally allowed concerted process. Consequently, either aromatic-type conjugative stabilization effects are operative in thiirene dioxides2,12 or the relative ease of S02 elimination reflects the relative thermodynamic stability of the (diradical )99 intermediates involved in the nonconcerted stepwise elimination process. [Pg.400]

Similarly, enamino vinyl sulfones (345) can undergo a thermally allowed electrocyclic reaction between the termini of the enaminic double bond and the allyl sulfonyl portion in the intermediate anion (346) to afford a, /1-unsaturated thiene dioxides (348) as shown in equation 126335. [Pg.469]

In a photochemical cycloaddition, one component is electronically excited as a consequence of the promotion of one electron from the HOMO to the LUMO. The HOMO -LUMO of the component in the excited state interact with the HOMO-LUMO orbitals of the other component in the ground state. These interactions are bonding in [2+2] cycloadditions, giving an intermediate called exciplex, but are antibonding at one end in the [,i4j + 2j] Diels-Alder reaction (Scheme 1.17) therefore this type of cycloaddition cannot be concerted and any stereospecificity can be lost. According to the Woodward-Hoffmann rules [65], a concerted Diels-Alder reaction is thermally allowed but photochemically forbidden. [Pg.24]

The rule may then be stated A thermal pericyclic reaction involving a Hiickel system is allowed only if the total number of electrons is 4n + 2. A thermal pericyclic reaction involving a Mobius system is allowed only if the total number of electrons is 4n. For photochemical reactions these rules are reversed. Since both the 2 + 4 and 2 + 2 cycloadditions are Hiickel systems, the Mdbius-Hiickel method predicts that the 2 + 4 reaction, with 6 electrons, is thermally allowed, but the 2 + 2 reaction is not. One the other hand, the 2 + 2 reaction is allowed photochemically, while the 2 + 4 reaction is forbidden. [Pg.1071]

A full development of the rate law for the bimolecular reaction of MDI to yield carbodiimide and CO indicates that the reaction should truly be 2nd-order in MDI. This would be observed experimentally under conditions in which MDI is at limiting concentrations. This is not the case for these experimements MDI is present in considerable excess (usually 5.5-6 g of MDI (4.7-5.1 ml) are used in an 8.8 ml vessel). So at least at the early stages of reaction, the carbon dioxide evolution would be expected to display pseudo-zero order kinetics. As the amount of MDI is depleted, then 2nd-order kinetics should be observed. In fact, the asymptotic portion of the 225 C Isotherm can be fitted to a 2nd-order rate law. This kinetic analysis is consistent with a more detailed mechanism for the decomposition, in which 2 molecules of MDI form a cyclic intermediate through a thermally allowed [2+2] cycloaddition, which is formed at steady state concentrations and may then decompose to carbodiimide and carbon dioxide. Isocyanates and other related compounds have been reported to participate in [2 + 2] and [4 + 2] cycloaddition reactions (8.91. [Pg.435]

The alternate approach of Dewar and Zimmerman can be illustrated by an examination of the 1,3,5-hexatriene system.<81,92> The disrotatory closure has no sign discontinuity (Hiickel system) and has 4n + 2 (where n = 1) ir electrons, so that the transition state for the thermal reaction is aromatic and the reaction is thermally allowed. For the conrotatory closure there is one sign discontinuity (Mobius system) and there are 4u + 2 (n = 1) ir electrons, so that the transition state for the thermal reaction is antiaromatic and forbidden but the transition state for the photochemical reaction is aromatic or allowed (see Chapter 8 and Table 9.8). If we reexamine the butadiene... [Pg.210]

Thermal allowed, Photo allowed, photo forbidden thermal forbidden... [Pg.503]

The actual rates of thermally-allowed pericyclic reactions vary vastly, and frontier-orbital theory (14, 15, 16) has proven to be the primary basis for quantitative understanding and correlation of the factors responsible. It is therefore of interest to find the dominant frontier orbital interactions for the group transfer reactions hypothesized to occur. [Pg.326]

A second category of silene reactions involves interactions with tt-bonded reagents which may include homonuclear species such as 1,3-dienes, alkynes, alkenes, and azo compounds as well as heteronuclear reagents such as carbonyl compounds, imines, and nitriles. Four modes of reaction have been observed nominal [2 + 2] cycloaddition (thermally forbidden on the basis of orbital symmetry considerations), [2 + 4] cycloadditions accompanied in some cases by the products of apparent ene reactions (both thermally allowed), and some cases of (allowed) 1,3-dipolar cycloadditions. [Pg.28]

Within the isolobal formalism, the conversion of 47 to 48 is a symmetry-allowed process, if it were to proceed as a concerted reaction (50). Structure 47 represents a transoid-2-meta.Wa-1,3-butadiene. In the bonding description, complex 48 represents formally a 1-metalla-bicyclo[1.1.0]butane. Therefore, the conversion of 47 to 48 represents a thermally allowed, concerted [ 2a + 2S] ring closure, in analogy to the pericyclic ring opening of bicyclo[1.1.0]butanes to give trans,trans-, 3-butadienes. [Pg.65]

The reported proposed sequence also offers two additional alternative mechanisms for the cyclodimerization of BCP (3), involving either intermediate 463 or 464 [6a, 13b]. However, they appear less likely, requiring successive three-membered ring fissions and formations. Alternatively, a thermally allowed concerted [jt2s + rt2a -I- pericyclic reaction involving the Walsh type molecular orbital of cyclopropane [124] has been proposed (Fig. 4) [13b]. [Pg.74]

The photocyclization of enamides has been the subject of detailed study and provides a valuable approach to the synthesis of alkaloids. A comprehensive review has been published.31 A variety of reaction types has been reported. The N-benzoylenamine 33, for example, is converted on irradiation to the trans-lactam 34 by a process involving conrotatory photocyclization followed by a thermally allowed [l,5]-suprafacial hydrogen migration.32 The influence of substituents on this transformation has been studied.33 The enacylamine 35 undergoes an analogous cyclization to give a mixture of cis- and trans-lactams 36, the ratio of which is solvent... [Pg.245]

Scheme 13 may look unfavorable on the face of it, but in fact the second two reactions are thermally allowed 10- and 14-electron electrocyclic reactions, respectively. The aromatic character of the transition states for these reactions is the major reason why the benzidine rearrangement is so fast in the first place.261 The second bimolecular reaction is faster than the first rearrangement (bi-molecular kinetics were not observed) it is downhill energetically because the reaction products are all aromatic, and formation of three molecules from two overcomes the entropy factor involved in orienting the two species for reaction. [Pg.51]


See other pages where Thermally allowed is mentioned: [Pg.354]    [Pg.373]    [Pg.416]    [Pg.21]    [Pg.68]    [Pg.90]    [Pg.621]    [Pg.93]    [Pg.363]    [Pg.269]    [Pg.282]    [Pg.340]    [Pg.68]    [Pg.398]    [Pg.116]    [Pg.1429]    [Pg.398]    [Pg.210]    [Pg.322]    [Pg.323]    [Pg.325]    [Pg.325]    [Pg.328]    [Pg.330]    [Pg.81]    [Pg.460]    [Pg.479]   


SEARCH



Allowables

Allowances

Allowing for Thermal Expansion

Cycloaddition thermally allowed

Cycloadditions thermally allowed

Hydrogen shift thermally allowed

Pericyclic processes, thermally allowed

Resistance maximum allowed thermal

Stress, allowable thermal

Thermal expansion allowance

Thermally allowed conversions

Thermally allowed intermediate

Thermally allowed reactions

Thermally allowed sigmatropic process

Thermally allowed substrate

© 2024 chempedia.info