Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Partial cathodic

The current I is called the total current. In free corrosion, i.e., without the contribution of external currents (see Fig. 2-1), it is always zero, as given by Eq. (2-8). and are known as the anodic and cathodic partial currents. According to Eq. (2-10), generally in electrolytic corrosion anodic total currents and/or cathodic redox reactions are responsible. [Pg.33]

Equation (2-38) is valid for every region of the surface. In this case only weight loss corrosion is possible and not localized corrosion. Figure 2-5 shows total and partial current densities of a mixed electrode. In free corrosion 7 = 0. The free corrosion potential lies between the equilibrium potentials of the partial reactions and U Q, and corresponds in this case to the rest potential. Deviations from the rest potential are called polarization voltage or polarization. At the rest potential = ly l, which is the corrosion rate in free corrosion. With anodic polarization resulting from positive total current densities, the potential becomes more positive and the corrosion rate greater. This effect is known as anodic enhancement of corrosion. For a quantitative view, it is unfortunately often overlooked that neither the corrosion rate nor its increase corresponds to anodic total current density unless the cathodic partial current is negligibly small. Quantitative forecasts are possible only if the Jq U) curve is known. [Pg.44]

Since OH ions are formed in neutral media in the cathodic partial reaction according to Eq. (2-19), the overall cathodic reaction appears by Eqs. (2-19) and (2-58) ... [Pg.58]

These three passive systems are important in the technique of anodic protection (see Chapter 21). The kinetics of the cathodic partial reaction and therefore curves of type I, II or III depend on the material and the particular medium. Case III can be achieved by alloying additions of cathodically acting elements such as Pt, Pd, Ag, and Cu. In principle, this is a case of galvanic anodic protection by cathodic constituents of the microstructure [50]. [Pg.61]

Surface films are formed by corrosion on practically all commercial metals and consist of solid corrosion products (see area II in Fig. 2-2). It is essential for the protective action of these surface films that they be sufficiently thick and homogeneous to sustain the transport of the reaction products between metal and medium. With ferrous materials and many other metals, the surface films have a considerably higher conductivity for electrons than for ions. Thus the cathodic redox reaction according to Eq. (2-9) is considerably less restricted than it is by the transport of metal ions. The location of the cathodic partial reaction is not only the interface between the metal and the medium but also the interface between the film and medium, in which the reaction product OH is formed on the surface film and raises the pH. With most metals this reduces the solubility of the surface film (i.e., the passive state is stabilized). [Pg.139]

Corrosion likelihood describes the expected corrosion rates or the expected extent of corrosion effects over a planned useful life [14]. Accurate predictions of corrosion rates are not possible, due to the incomplete knowledge of the parameters of the system and, most of all, to the stochastic nature of local corrosion. Figure 4-3 gives schematic information on the different states of corrosion of extended objects (e.g., buried pipelines) according to the concepts in Ref. 15. The arrows represent the current densities of the anode and cathode partial reactions at a particular instant. It must be assumed that two narrowly separated arrows interchange with each other periodically in such a way that they exist at both fracture locations for the same amount of time. The result is a continuous corrosion attack along the surface. [Pg.142]

J/ = anodic partiai current density ). Jq= cathodic partial current density /g = total anodic current = total cathodic current... [Pg.143]

A relatively high degree of corrosion arises from microbial reduction of sulfates in anaerobic soils [20]. Here an anodic partial reaction is stimulated and the formation of electrically conductive iron sulfide deposits also favors the cathodic partial reaction. [Pg.144]

An important consequence of ion migration is the formation of cells where the coated surface acts as a cathode and the exposed metal at the damage acts as an anode (see Section 4.3). The reason for this is that at the metal/coating interface, the cathodic partial reaction of oxygen reduction according to Eq. (2-17) is much less restricted than the anodic partial reaction according to Eq. (2-21). The activity of such cells can be stimulated by cathodic protection. [Pg.156]

If, however, it is assumed from Eq. (2-40) that the protection current density corresponds to the cathodic partial current density for the oxygen reduction reaction, where oxygen diffusion and polarization current have the same spatial distribution, it follows from Eq. (2-47) with = A0/7 ... [Pg.161]

Due to both carbonization and penetration of chloride ions, steel will pass from a passive to an active condition and (consequently) may corrode. If the mortar is completely surrounded by water, oxygen diffusion in wet mortar is extremely low so that the situation is corrosion resistant because the cathodic partial reaction according to Eq. (2-17) scarcely occurs. For this reason the mortar lining of waste pipes remains protective against corrosion even if it is completely carbonated or if it is penetrated by chloride ions. [Pg.174]

The sum of all the cathodic partial reactions is included in e.g., oxygen reduction according to Eq. (2-17) and hydrogen evolution according to Eq. (2-19). The intermediate formation of anode metal ions of anomalous valence is also possible ... [Pg.182]

The electrolysis protection process using impressed current aluminum anodes allows uncoated and hot-dipped galvanized ferrous materials in domestic installations to be protected from corrosion. If impressed current aluminum anodes are installed in water tanks, the pipework is protected by the formation of a film without affecting the potability of the water. With domestic galvanized steel pipes, a marked retardation of the cathodic partial reaction occurs [15]. Electrolytic treatment alters the electrolytic characteristics of the water, as well as internal cathodic protection of the tank and its inserts (e.g., heating elements). The pipe protection relies on colloidal chemical processes and is applied only to new installations and not to old ones already attacked by corrosion. [Pg.456]

Besides the use of anodic polarization with impressed current to achieve passivation, raising the cathodic partial current density by special alloying elements and the use of oxidizing inhibitors (and/or passivators) to assist the formation of passive films can be included in the anodic protection method [1-3]. [Pg.464]

Passivating inhibitors act in two ways. First they can reduce the passivating current density by encouraging passive film formation, and second they raise the cathodic partial current density by their reduction. Inhibitors can have either both or only one of these properties. Passivating inhibitors belong to the group of so-called dangerous inhibitors because with incomplete inhibition, severe local active corrosion occurs. In this case, passivated cathodic surfaces are close to noninhibited anodic surfaces. [Pg.475]

Fig. 21-6 The dependence of the passivation process on the shape of the cathodic partial current potential curve (a) Anodic partial current potential curve, (b) cathodic partial current-potential curve without local cathode rest potential (c) cathodic partial current potential curve with local cathode rest potential I7j p. Fig. 21-6 The dependence of the passivation process on the shape of the cathodic partial current potential curve (a) Anodic partial current potential curve, (b) cathodic partial current-potential curve without local cathode rest potential (c) cathodic partial current potential curve with local cathode rest potential I7j p.
If — during this process — the Cu2+-concentration decreases, the mixed potential will shift along the cathodic partial current density curve (like a polarographic curve in this example) toward the equilibrium potential of the zinc amalgam, in case the amalgam reservior is large enough. [Pg.231]

The sum of all cathodic partial currents across the phase boundary equals the sum of all anodic partial currents at the mixed potential therefore, a further condition is ... [Pg.240]

At junctions between electronic conductors and electrolytes, the exchange is associated with continuing anodic and cathodic partial reactions. It therefore follows that equilibrium can be established for an electrode reaction only when this reaction is invertible (i.e., can be made to occur in the opposite direction). [Pg.26]

When anodic polarization is appreciable, the reverse (cathodic) partial CD becomes exceedingly low and practically, we can sume that i i when cathodic polarization is appreciable, we can assume that i i. Thus, the total range of potential can be divided into three regions one region at low values of polarization (to both sides of the equilibrium potential), where the two partial reactions occur at comparable rates,... [Pg.80]

Paunovic [23] and Saito [24] first advanced the notion that an electroless deposition process could be modeled using a simple electrochemical approach. They reasoned that the potential of a surface undergoing electroless deposition could be regarded as a mixed potential intermediate in value between the potentials of its constituent anodic and cathodic partial reactions. These authors employed the mixed potential concept of corrosion reactions first outlined in a systematic manner by Wagner and... [Pg.228]

Traud1 [26], The latter reported that Zn dissolution from Zn/Hg amalgam was dependent on the amalgam electrochemical potential, but independent of the accompanying H2 evolution partial reaction. In Paunovic s and Saito s adaptation of this model, the partial electroless reactions occur simultaneously on the plating surface, resulting in the development of an equilibrium potential intermediate in value between the reversible potentials, in practice the experimentally-determined open circuit potential values, of the anodic and cathodic partial reactions. [Pg.229]

Figure 1 shows a generalized representation of an electroless deposition process obeying MPT [28]. Polarization curves are shown for the two partial reactions (full lines), and the curve expected for the full electroless solution (dashed curve). The polarization curve for anodic and cathodic partial reactions intersect the potential axis at their respective equilibrium potential values, denoted by / j]cd and respectively. At Emp, the anodic and cathodic partial current densities are equal, a... [Pg.229]

A discussion of the applicability of the MPT model to a particular electroless system ideally presumes knowledge of the kinetics and mechanisms of the anodic and cathodic partial reactions, and experimental verification of the interdependence or otherwise of these reactions. However, the study of the kinetics, catalysis, and mechanistic aspects of electroless deposition is an involved subject and is discussed separately. [Pg.230]

This shows that for both net anodic and net cathodic currents at the experimental electrode, the sum of the cathodic partial current at this electrode and the current at the counter electrode (anodic or cathodic) is equivalent to the anodic metal dissolution reaction. The combined cathodic reactions will thus give rise to titration corresponding to the metal dissolution rate. [Pg.259]

Scheme 14 Cathodic partial hydrogenation and deamination of a thiopyran. Scheme 14 Cathodic partial hydrogenation and deamination of a thiopyran.
Current-Potential Relationship for Partial Reactions, Partial i = /(A(/)) functions can be derived by joining equations expressing the rate of electrochemical reactions in terms of current [Eqs. (6.18) and (6.20)] and equations expressing the rate constant as a function of potential [Eqs. (6.31) and (6.32)]. Thus, the cathodic partial current density i is obtained from Eqs. (6.18) and (6.31) to yield... [Pg.84]

Potential Difference A< Departs from Equilibrium Butler-Volmer Equation, When the interphase is not in equihbrium, a net current density i flows through the electrode (the double layer). It is given by the difference between the anodic partial current density i (a positive quantity) and the cathodic partial current density i (a negative quantity) ... [Pg.85]

Large Cathodic Current We have seen from Figure 6.7 that for the large negative values of overpotential r], the partial cathodic current density i approaches i, i i. For these conditions the Butler-Volmer equation (6.45) can be simplified. Analysis of Eq. (6.45) shows that when rj becomes more negative, the first exponential term in the equation (corresponding to the anodic partial current) decreases, whereas the second exponential term (corresponding to the cathodic partial reaction) increases. Thus, under these conditions. [Pg.88]

An electrochemical model for the process of electroless metal deposition was suggested by Paunovic (10) and Saito (8) on the basis of the Wagner-Traud (1) mixed-potential theory of corrosion processes. According to the mixed-potential theory of electroless deposition, the overall reaction given by Eq. (8.2) can be decomposed into one reduction reaction, the cathodic partial reaction. [Pg.140]


See other pages where Partial cathodic is mentioned: [Pg.43]    [Pg.48]    [Pg.66]    [Pg.104]    [Pg.139]    [Pg.150]    [Pg.180]    [Pg.182]    [Pg.194]    [Pg.393]    [Pg.428]    [Pg.475]    [Pg.475]    [Pg.484]    [Pg.19]    [Pg.229]    [Pg.229]    [Pg.381]    [Pg.382]    [Pg.86]   


SEARCH



Additives cathodic partial reaction

Cathodic partial process

Cathodic reactions partial

Charge cathodic partial reaction

Copper cathodic partial reaction

Electroless deposition cathodic partial reaction

Kinetics cathodic partial reaction

The Cathodic Partial Reaction. Kinetic Scheme

Transport control, cathodic partial process

© 2024 chempedia.info