Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Material selection corrosion

Siace surface reactions iavolved with antiwear and EP additives depend not only on the type of mbbiag materials but also oa operatiag temperature, surface speed, and corrosion questions, selection should be carefully iategrated with the oil type, machine design, and operatiag coaditioas. [Pg.242]

The fifth component is the stmcture, a material selected for weak absorption for neutrons, and having adequate strength and resistance to corrosion. In thermal reactors, uranium oxide pellets are held and supported by metal tubes, called the cladding. The cladding is composed of zirconium, in the form of an alloy called Zircaloy. Some early reactors used aluminum fast reactors use stainless steel. Additional hardware is required to hold the bundles of fuel rods within a fuel assembly and to support the assembhes that are inserted and removed from the reactor core. Stainless steel is commonly used for such hardware. If the reactor is operated at high temperature and pressure, a thick-walled steel reactor vessel is needed. [Pg.210]

At very high and very low temperatures, material selection becomes an important design issue. At low temperatures, the material must have sufficient toughness to preclude transition of the tank material to a brittle state. At high temperatures, corrosion is accelerated, and thermal expansion and thermal stresses of the material occur. [Pg.309]

Selection of Equipment Packed columns usually are chosen for very corrosive materials, for liquids that foam badly, for either small-or large-diameter towers involving veiy low allowable pressure drops, and for small-scale operations requiring diameters of less than 0.6 m (2 ft). The type of packing is selected on the basis of resistance to corrosion, mechanical strength, capacity for handling the required flows, mass-transfer efficiency, and cost. Economic factors are discussed later in this sec tion. [Pg.1352]

In the absence of factual corrosion information for a particular set of fluid conditions, a reasonably good selection would be possible from data based on the resistance of materials to a very simifar environment. These data, however, should be used with some reservations. Good practice calls for applying such data for preliminary screening. Materials selected thereby would reqmre further study in the fluid system under consideration. [Pg.2417]

The primaiy purpose of materials selection is to provide the optimum equipment for a process application in terms of materials of construction, design, and corrosion-control measures. Optimum here means that which comprises the best combination of cost, life, safety, and reliability. [Pg.2424]

The selection of materials to be used in design dictates a basic understanding of the behavior of materials and the principles that govern such behavior. If proper design of suitable materials of construction is incorporated, the eqiiipment should deteriorate at a uniform and anticipated gradual rate, which will allow scheduled maintenance or replacement at regular inteivals. If localized forms of corrosion are characteristic of the combination of materials and environment, the materials engineer should still be able to predict the probable life of equipment, or devise an appropriate inspection schedule to preclude unexpected failures. The concepts of predictive, or at least preventive, maintenance are minimum requirements to proper materials selection. This approach to maintenance is certainly intended to minimize the possibility of unscheduled production shutdowns because of corrosion failures, with their attendant possible financial losses, hazard to personnel and equipment, and resultant environmental pollution. [Pg.2424]

We shall now examine material selection for a pressure vessel able to contain a gas at pressure p, first minimising the weight, and then the cost. We shall seek a design that will not fail by plastic collapse (i.e. general yield). But we must be cautious structures can also fail by fast fracture, by fatigue, and by corrosion superimposed on these other modes of failure. We shall discuss these in Chapters 13, 15 and 23. Here we shall assume that plastic collapse is our only problem. [Pg.124]

If the amount of metal removal by erosion is significant the surface will probably be continually active. Metal loss will be the additive effect of erosion and active corrosion. Sometimes the erosion rate is higher than that of active corrosion. The material selection judgment can then disregard coirosion and proceed on the basis of erosion resistance provided the corrosion rates of aetive surfaces of the alloys considered are not much different. As an example of magnitudes, a good high-chromium iron may lose metal from erosion only a tenth as fast as do the usual stainless steels. [Pg.270]

Several steps can be taken to maximize the run time for the reciprocating compressor. Since wear is a function of rubbing speed, the piston speed can be kept to a minimum. Chapter 3 made recommendations for piston speed. Reliability problems due to valves are reputed to account tor 40% of the maintenance cost of the compressor. Valves are the single largest cause for unplanned shutdowns. Basically, valve life can he increased by keeping the speed of the compressor as low as practical. At 360 rpm, the valves are operated six times a second. At 1,200 rpm, ihc valves operate 20 times a second or 1,728,000 times in a day. It is not difficult to understand why the valves are considered critical. To keep the reliability in mind, valve type, material selection and application considerations such as volume ratio, gas corrosiveness, and gas cleanliness need attention by the experts. One final note is that while lubrication is an asset to the rubbing parts, it is not necessarily good for valve reliability. [Pg.475]

Another serious problem in heat exchangers is corrosion. Severe corrosion can and does occur in tubing and very often with common fluids such as water. Proper material selection based on a full analysis of the operating fluids, velocities and temperatures is mandatory. Very often, heavier gauge tubing is specified to offset the effects of corrosion, but this is only a partial solution. This should be followed by proper start-up, operating and shut-down procedures. [Pg.30]

Uniform corrosion is the deterioration of a metal surface that occurs uniformly across the material. It occurs primarily when the surface is in contact with an aqueous environment, which results in a chemical reaction between the metal and the service environment. Since this form of corrosion results in a relatively uniform degradation of apparatus material, it can be accounted for most readily at the time the equipment is designed, either by proper material selection, special coatings or linings, or increased wall thicknesses. [Pg.13]

Proper material selection for chemical and process equipment is one of the first important problems encountered by the designer. Among the many parameters that must be considered are structural strength specifications, heat resistance, corrosion resistance, physical properties, fabrication characteristics, composition and structure of material and cost. [Pg.51]

This book is designed as a handy desk reference covering fundamental engineering principles of project planning schemes and layout, corrosion principles and materials properties of engineering importance. It is intended as a general source of typical materials property data, useful for first pass materials selection in process design problems. [Pg.196]

Material selection for the enclosure shell should consider the corrosiveness of the environment. Aluminized sheeting is preferred over zinc-coated material in a steel-production environment. [Pg.903]

As many emissions involve chlorinated compounds, corrosion is a major problem in many control methods. The corrosion of columns and surface condensers can be prevented or reduced by the correct material selection. However, corrosion remains a constant threat to the interior of incinerators. Additional pollution control equipment such as scrubbers may also be required to remove acidic compounds from treated gases before discharging into the atmosphere. [Pg.1253]

One of the most effective methods of preventing corrosion is the selection of the proper metal or alloy for a particular corrosive service. Once the conditions of service and environment have been determined that the equipment must withstand, there are several materials available commercially that can be selected to perform an effective service in a compatible environment. Some of the major problems arise from popular misconceptions for example, the use of stainless steel. Stainless steel is not stainless and is not the most corrosion-resistant material. Compatibility of material with service environment is therefore essential. For example, in a hydrogen sulfide environment, high-strength alloys (i.e., yield strength above 90,000 psi or Rc 20 to 22) should be avoided. In material selection some factors that are important to consider are material s physical and chemical properties, economics and availability. [Pg.1323]

The principal economic implications of corrosion of a plant are the initial cost of construction, the cost of maintenance and replacement, and the loss of production through unplanned shutdowns. The initial cost of the plant is influenced by material selection, and a choice of material that is more corrosion resistant than is necessary for the safe operation of the plant over its design life is a very expensive error. This cost involves initial outlay of money, and plants have been built which could never be profitable because of the inappropriate materials selection. [Pg.896]

Materials selection cannot be based on any simple combination of common corrosive species. There are many complicating factors, including the harmful or beneficial effects of contaminants at the ppm level, the relative proportion in which certain combinations of species are present (H+ and CH are often synergistic in their effect, whereas and CH often counter each other) and the... [Pg.899]

During the materials selection procedure isothermal corrosion testing may indicate the suitability of a material for handling a corrosive process fluid. In many cases where heat transfer is involved the metal wall temperature experienced in service is higher than the bulk process fluid temperature. This, and the actual heat transfer through the material, must be taken into account since both factors can increase corrosion rates significantly. [Pg.902]

The corrosion conditions can be different at the fluid line from the bulk condition. Aqueous liquids have a concave meniscus, which creates a thin film of liquid on the vessel wall immediately above the liquid line. Some corrosion processes, particularly the diffusion of dissolved gases, are more rapid in these conditions. Additionally, the concentration of dissolved gases is highest near the liquid surface, especially when agitation is poor. Locally high corrosion rates can therefore occur at the liquid line, leading to thinning in a line around the vessel. This effect is reduced if the liquid level in the vessel varies with time. Any corrosion tests undertaken as part of the materials selection procedure should take this effect into account. [Pg.902]

If changes have been made to the process (e.g. if incoming water quality cannot be maintained or other uncertainties arise concerning the corrosion behavior of the construction materials) it is possible to incorporate coupons or probes of the material into the plant and monitor their corrosion behavior. This approach may be used to assist in the materials selection process for a replacement plant. Small coupons (typically, 25 x 50 mm) of any material may be suspended in the process stream and removed at intervals for weight loss determination and visual inspection for localized corrosion. Electrical resistance probes comprise short strands for the appropriate material electrically isolated from the item of plant. An electrical connection from each end of the probe is fed out of the plant to a control box. The box senses the electrical resistance of the probe. The probe s resistance rises as its cross-sectional area is lost through corrosion. [Pg.911]

The protection of vessels containing corrosive materials presents a special problem for the selection of bursting discs—a rapid rate of corrosion can lead to a high frequency of failures. In addition, the creep of a metal disc when under tension at elevated temperatures would tend to weaken it and result in premature failure. [Pg.936]

Bogaerts, W. F., Ryckaert, M. R. and Yancoille, M. J. S., PRIME—the European ESPRIT project on expert systems for materials selection. In Proceedings of Corrosion 88, St Louis, 1988, paper 121, NACE, Houston (1988)... [Pg.39]

All methods of corrosion control such as careful materials selection, including coating and cladding, inhibition and cathodic protection, should be regarded as an integral part of the design process. [Pg.67]


See other pages where Material selection corrosion is mentioned: [Pg.320]    [Pg.320]    [Pg.320]    [Pg.320]    [Pg.316]    [Pg.320]    [Pg.320]    [Pg.2417]    [Pg.2420]    [Pg.2423]    [Pg.2425]    [Pg.13]    [Pg.21]    [Pg.210]    [Pg.461]    [Pg.1324]    [Pg.896]    [Pg.897]    [Pg.903]    [Pg.945]    [Pg.405]    [Pg.477]    [Pg.482]    [Pg.35]    [Pg.986]   
See also in sourсe #XX -- [ Pg.557 ]




SEARCH



Corrosion control material selection

Corrosion prevention material selection

Corrosive material

General Guidelines for Materials Selection and Corrosion Allowances

Material selection

Materials corrosion

Selective corrosion

© 2024 chempedia.info