Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper II chloride

Sulphur dichloride oxide (thionyl chloride) on the hydrated chloride can also be used to produce the anhydrous chloride in certain cases, for example copper(II) chloride and chromium(III) chloride ... [Pg.343]

By warming either copper(I) oxide or a mixture of copper(II) chloride and copper with concentrated hydrochloric acid, until a deep brown solution is formed ... [Pg.414]

By the reduction of copper(II) chloride or a mixed solution of copper(II) sulphate and common salt by sulphur dioxide. [Pg.415]

Epsom salts, see Magnesium sulfate 7-water Epsomite, see Magnesium sulfate 7-water Eriochalcite, see Copper(II) chloride... [Pg.273]

A convenient synthesis of organochlorosilanes from organosilanes is achieved by reaction with inorganic chlorides of Hg, Pt, V, Cr, Mo, Pd, Se, Bi, Fe, Sn, Cu, and even C. The last compounds, tin tetrachloride, copper(II) chloride, and, under catalytic conditions, carbon tetrachloride (117,118), are most widely used. [Pg.27]

Oxychlorination of Ethylene to Dichloroethane. Ethylene (qv) is converted to dichloroethane in very high yield in fixed-bed, multitubular reactors and fluid-bed reactors by reaction with oxygen and hydrogen chloride over potassium-promoted copper(II) chloride supported on high surface area, porous alumina (84) ... [Pg.203]

Cupric chloride or copper(II) chloride [7447-39 ], CUCI2, is usually prepared by dehydration of the dihydrate at 120°C. The anhydrous product is a dehquescent, monoclinic yellow crystal that forms the blue-green orthohombic, bipyramidal dihydrate in moist air. Both products are available commercially. The dihydrate can be prepared by reaction of copper carbonate, hydroxide, or oxide and hydrochloric acid followed by crystallization. The commercial preparation uses a tower packed with copper. An aqueous solution of copper(II) chloride is circulated through the tower and chlorine gas is sparged into the bottom of the tower to effect oxidation of the copper metal. Hydrochloric acid or hydrogen chloride is used to prevent hydrolysis of the copper(II) (11,12). Copper(II) chloride is very soluble in water and soluble in methanol, ethanol, and acetone. [Pg.253]

The addition of 1,3-dicarbonyl compounds to /3-chloroazoalkenes is the basis of a pyrrole synthesis (Scheme 70a) 81TL1059). Pyrroles are also obtained by the reaction of enamines with azoalkenes (Scheme 70b) (79TL2969,81TL1475), and the copper(II) chloride catalyzed addition of 1,3-dicarbonyl compounds to arylazoalkenes (Scheme 70c) (82JOC684). [Pg.128]

Cupri-. cupric, copper(II). -azetst, n. cupric acetate, copper(II) acetate, -carbonat, n. cupric carbonate, copper(II) carbonate, -chlorid, n. cupric chloride, copper(II) chloride. -hydroxyd, n. cupric hydroxide, cop-per(II) hydroxide. -ion, n. cupric ion, copper(II) ion. -ozalat, n. cupric oxalate, copper(II) oxalate, -oxyd, n. cupric oxide, copper(II) oxide. -salz, n. cupric salt, copper(II) salt, -suifat, n. cupric sulfate. copper(II) sulfate, -sulfid, n. cupric sulfide, copper(II) sulfide, -verbihdung, /. cupric compound, copper(II) compound, -wein-saure, /. cupritartaric acid. [Pg.94]

Kupfer-bromid, n. copper bromide, specif, cupric bromide, copper(II) bromide, -bro-mtir, n. cuprous bromide, copper(I) bromide, -chlorid, n. copper chloride, specif, cupric chloride, copper(II) chloride, -chloriir, n. cuprous chloride, copper(I) chloride, -cyamd, Ti. copper cyanide, specif, cupric cyanide, copper(II) cyanide, -cyaniir, n. cuprous cyanide, copper(I) cyanide, -dom, m. slag from liquated copper, -draht, m. copper wire, -drahtnetz, n. copper gauze, -drehspane,... [Pg.265]

A small portion of vinyl chloride is produced from ethane via the Transcat process. In this process a combination of chlorination, oxychlo-rination, and dehydrochlorination reactions occur in a molten salt reactor. The reaction occurs over a copper oxychloride catalyst at a wide temperature range of 310-640°C. During the reaction, the copper oxychloride is converted to copper(I) and copper(II) chlorides, which are air oxidized to regenerate the catalyst. Figure 6-1 is a flow diagram of the Transcat process for producing vinyl chloride from ethane. ... [Pg.171]

Catalyst regeneration occurs by the reaction of thallium(I) chloride with copper(II) chloride in the presence of oxygen or air. The formed Cu(I) chloride is reoxidized by the action of oxygen in the presence of HCI ... [Pg.195]

The Wacker process uses an aqueous solution of palladium(II) chloride, copper(II) chloride catalyst system. [Pg.198]

Katsuya et al. [5 published the oxidative coupling (agent copper(II) chloride/ aluminum chloride) of electron-rich benzene derivatives such as 2,5-dimethoxy-benzene to poly(2,5-dimethoxy-1,4-phenylene) (2). The resulting polymer is only soluble in concentrated sulfuric acid, and is fusible at 320r C. Ueda et al. 16] described the coupling of the same monomer with iron(III) chloride/aluminum chloride. The polymers obtained by the authors were not thoroughly para-linked. [Pg.32]

Similarly, copper(II) 1,8,15,22-tetraazaphthaIocyanine can be made from copper(II) chloride, pyridine-2,3-dicarboxylic acid, and urea in the presence of a catalytic amount of ammonium molybdate(VI), heated to 210DC for 4-5 hours, in a yield of 52%.459... [Pg.829]

At high copper(II) chloride indole ratios the pyrrole ring of 2-methylindole was chlorinated in yields approaching 92%. This reaction is believed to involve radical cations of indoles formed in an electron-transfer process. At low copper(ll) chloride indole ratios dimers were formed [86JCS(P 1)2305]. [Pg.259]

Sulfonyl chlorides are added in the presence of copper(I)- or copper(II)-chloride exclusively212, however, mostly in the further presence of triethylamine hydrochloride213 220, especially in additions to conjugated systems214-218. [Pg.189]

Whereas acyclic sulfoxides form complexes with various metal salts, thiirane oxides react with copper(II) chloride or bromide163 in benzene at room temperature to give the thiolsulfonate 146a. In alcoholic solution below 0 °C the major products are sulfinates (149). Similar results are obtained in the reaction of thiirane oxides with ethanesulfinyl chloride163 as summarized in equation 60. [Pg.424]

Many of the d-block elements form characteristically colored solutions in water. For example, although solid copper(II) chloride is brown and copper(II) bromide is black, their aqueous solutions are both light blue. The blue color is due to the hydrated copper(II) ions, [Cu(H20)fJ2+, that form when the solids dissolve. As the formula suggests, these hydrated ions have a specific composition they also have definite shapes and properties. They can be regarded as the outcome of a reaction in which the water molecules act as Lewis bases (electron pair donors, Section 10.2) and the Cu2+ ion acts as a Lewis acid (an electron pair acceptor). This type of Lewis acid-base reaction is characteristic of many cations of d-block elements. [Pg.788]

We postulated a reaction mechanism with participation of an aromatic radical cation which was formed by one electron transfer from an aromatic hydrocarbon to copper(II) chloride. Activated alumina has electron-acceptor properties, and formation of a radical cation of an aromatic hydrocarbon adsorbed on alumina has been observed by ESR (ref. 13). Therefore, it seemed to us that alumina as a support facilitates the generation of the radical cation of the aromatic hydrocarbon. [Pg.21]

Alkoxybenzenes were highly regioselectively halogenated by use of copper(II) halides supported on alumina to give 4-halo-alkoxybenzenes in high yield. Bromination of alkoxybenzenes with alumina-supported copper(II) bromide occurred at lower temperature than chlorination with alumina-supported copper(II) chloride (ref. 14). [Pg.22]

Carboxylic acids can be prepared in moderate-to-high yields by treatment of diazonium fluoroborates with carbon monoxide and palladium acetate or copper(II) chloride. The mixed anhydride ArCOOCOMe is an intermediate that can be isolated. Other mixed anhydrides can be prepared by the use of other salts instead of sodium acetate." An arylpalladium compound is probably an intermediate." ... [Pg.938]

CHROMIUM TRIOXIDE-PYRIDINE COMPLEX, preparation in situ, 55, 84 Chrysene, 58,15, 16 fzans-Cinnamaldehyde, 57, 85 Cinnamaldehyde dimethylacetal, 57, 84 Cinnamyl alcohol, 56,105 58, 9 2-Cinnamylthio-2-thiazoline, 56, 82 Citric acid, 58,43 Citronellal, 58, 107, 112 Cleavage of methyl ethers with iodotri-methylsilane, 59, 35 Cobalt(II) acetylacetonate, 57, 13 Conjugate addition of aryl aldehydes, 59, 53 Copper (I) bromide, 58, 52, 54, 56 59,123 COPPER CATALYZED ARYLATION OF /3-DlCARBONYL COMPOUNDS, 58, 52 Copper (I) chloride, 57, 34 Copper (II) chloride, 56, 10 Copper(I) iodide, 55, 105, 123, 124 Copper(I) oxide, 59, 206 Copper(ll) oxide, 56, 10 Copper salts of carboxylic acids, 59, 127 Copper(l) thiophenoxide, 55, 123 59, 210 Copper(l) trifluoromethanesulfonate, 59, 202... [Pg.114]


See other pages where Copper II chloride is mentioned: [Pg.111]    [Pg.163]    [Pg.424]    [Pg.250]    [Pg.250]    [Pg.250]    [Pg.426]    [Pg.256]    [Pg.256]    [Pg.256]    [Pg.257]    [Pg.107]    [Pg.167]    [Pg.313]    [Pg.137]    [Pg.210]    [Pg.32]    [Pg.307]    [Pg.308]    [Pg.143]    [Pg.644]    [Pg.17]    [Pg.19]    [Pg.19]    [Pg.75]    [Pg.165]   
See also in sourсe #XX -- [ Pg.314 , Pg.532 ]




SEARCH



Copper chloride

Copper/II)

II) Chloride

Palladium* II) chloride-copper

© 2024 chempedia.info