Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cooling hardness

Vatain Ayurvedic medicine, the air humor. Vata qualities include dryness, cooling, hardness, and changeability. Viryathe energetic quality of a substance, such as warming or cooling. [Pg.113]

Place 50 g. of o-chloronitrobenzene and 75 g. of clean dry sand in a 250 ml. flask equipped with a mechanical stirrer. Heat the mixture in an oil or fusible metal bath to 215-225° and add, during 40 minutes, 50 g. of copper bronze or, better, of activated copper bronze (Section 11,50, 4) (1), Maintain the temperature at 215-225° for a further 90 minutes and stir continuously. Pour the hot mixture into a Pyrex beaker containing 125 g. of sand and stir until small lumps are formed if the reaction mixture is allowed to cool in the flask, it will set to a hard mass, which can only be removed by breaking the flask. Break up the small lumps by powdering in a mortar, and boil them for 10 minutes with two 400 ml. [Pg.527]

Note on the laboratory preparation of monoethylaniline. Although the laboratory preparation of monomethyl- or monoethyl-aniline is hardly worth whUe, the following experimental details may be useful to those who wish to prepare pure monoethylaniline directly from amline. In a flask, fitted with a double surface reflux condenser, place 50 g. (49 ml.) of aniline and 65 g. of ethyl bromide, and boU gently for 2 hours or until the mixture has almost entirely sohdified. Dissolve it in water and boil off the small quantity of unreacted ethyl bromide. Render the mixture alkaUne with concentrated sodium hydroxide solution, extract the precipitated bases with three 50 ml. portions of ether, and distil off the ether. The residual oil contains anihne, mono- and di-ethylaniline. Dissolve it in excess of dilute hydrochloric acid (say, 100 ml. of concentrated acid and 400 ml. of water), cool in ice, and add with stirring a solution of 37 g. of sodium nitrite in 100 ml. of water do not allow the temperature to rise above 10°. Tnis leads to the formation of a solution of phenyl diazonium chloride, of N-nitrosoethylaniline and of p-nitrosodiethylaniline. The nitrosoethylaniline separates as a dark coloured oil. Extract the oil with ether, distil off the ether, and reduce the nitrosoamine with tin and hydrochloric acid (see above). The yield of ethylaniline is 20 g. [Pg.571]

Phthalide. In a 1 litre bolt-head flask stir 90 g. of a high quality zinc powder to a thick paste with a solution of 0 5 g. of crystallised copper sulphate in 20 ml. of water (this serves to activate the zinc), and then add 165 ml. of 20 per cent, sodium hydroxide solution. Cool the flask in an ice bath to 5°, stir the contents mechanically, and add 73-5 g. of phthalimide in small portions at such a rate that the temperature does not rise above 8° (about 30 minutes are required for the addition). Continue the stirring for half an hour, dilute with 200 ml. of water, warm on a water bath imtil the evolution of ammonia ceases (about 3 hours), and concentrate to a volume of about 200 ml. by distillation vmder reduced pressure (tig. 11,37, 1). Filter, and render the flltrate acid to Congo red paper with concentrated hydrochloric acid (about 75 ml. are required). Much of the phthalide separates as an oil, but, in order to complete the lactonisation of the hydroxymethylbenzoic acid, boil for an hour transfer while hot to a beaker. The oil solidifles on cooling to a hard red-brown cake. Leave overnight in an ice chest or refrigerator, and than filter at the pump. The crude phthalide contains much sodium chloride. RecrystaUise it in 10 g. portions from 750 ml. of water use the mother liquor from the first crop for the recrystaUisation of the subsequent portion. Filter each portion while hot, cool in ice below 5°, filter and wash with small quantities of ice-cold water. Dry in the air upon filter paper. The yield of phthalide (transparent plates), m.p. 72-73°, is 47 g. [Pg.772]

Place an intimate mixture of 125 g. of powdered, anhydrous zinc chloride and 26-5 g. of acetophenonephenylhydrazone in a tall 500 ml. beaker in an oil bath at 170°. Stir the mixture vigorously by hand. After 3-4 minutes the mass becomes hquid and evolution of white fumes commences. Remove the beaker from the bath and stir the mixture for 5 minutes. Then stir in 100 g. of clean, white sand in order to prevent solidification to a hard mass. Digest the mixture for 12-16 hours on a water bath with 400 ml. of water and 12 ml. of concentrated hydrochloric acid in order to dissolve the zinc chloride. Filter off the sand and the crude 2-phenylindole, and boil the solids with 300 ml. of rectified spirit. Treat the hot mixture with a little decolourising carbon and filter through a pre-heated Buchner funnel wash the residue with 40 ml. of hot rectified spirit. Cool the combined filtrates to room temperature, filter off the 2-phenylindole and wash it three times with 10 ml. portions of cold alcohol. Dry in a vacuum desiccator over anhydrous calcium chloride. The yield of pure 2-phenylindole, m.p. 188-189°, is 16 g. [Pg.852]

In a 500 ml. three-necked flask, fitted with a reflux condenser and mechanical stirrer, place 121 g. (126-5 ml.) of dimethylaniline, 45 g. of 40 per cent, formaldehyde solution and 0 -5 g. of sulphanilic acid. Heat the mixture under reflux with vigorous stirring for 8 hours. No visible change in the reaction mixture occurs. After 8 hours, remove a test portion of the pale yellow emulsion with a pipette or dropper and allow it to cool. The oil should solidify completely and upon boiling it should not smell appreciably of dimethylaniline if this is not the case, heat for a longer period. When the reaction is complete, steam distil (Fig. II, 41, i) the mixture until no more formaldehyde and dimethylaniline passes over only a few drops of dimethylaniline should distil. As soon as the distillate is free from dimethylaniline, pour the residue into excess of cold water when the base immediately solidifies. Decant the water and wash the crystalline solid thoroughly with water to remove the residual formaldehyde. Finally melt the solid under water and allow it to solidify. A hard yellowish-white crystalline cake of crude base, m,p. 80-90°, is obtained in almost quantitative yield. RecrystaUise from 250 ml. of alcohol the recovery of pure pp -tetramethyldiaminodiphenylmethane, m.p. 89-90°, is about 90 per cent. [Pg.987]

The reaction may be more easily controlled and the chlorosulphonic acid added all at once if the acetanilide is employed in the form of a hard cake. The latter is prepared by melting the acetanilide in the flask over a free flame and causing the compound to solidify over the lower part of the flask by swirling the liquid. If the reaction becomes too vigorous under these conditions, cool the flask momentarily by immersion in an ice bath. [Pg.1007]

In a wide-mouthed test-tube ( boiling tube ) place 5 g. of phenol, 15 ml. of 40 per cent, formaldehyde solution and 3 ml. of concentrated ammonia solution (sp. gr. 0-88). Warm the mixtme with a small flame until it becomes opaque. Cool, discard the aqueous layer, but retain the viscous material in the tube. Heat the latter in a water bath at 60° for 30 minutes and then heat the pasty mass in an air oven at 75° for 4-6 hours. A hard sohd resin is produced. [Pg.1023]

The next day comes and the hung-over chemist wakens to see a dark red solution stirring away. In some cases where the chemist had made an enormous batch of this stuff, there may be seen a small mass of crystalline precipitate at the bottom of the flask. This is no big deal and will go away in the next step. If the chemist had made this in a flat-bottomed flask (which she really should have for convenience) then the ice tray is removed, the flask returned to the stir plate, a distillation setup attached, and the acetone is vacuum distilled from the flask. After all the acetone has come over the chemist can proceed in two different ways. One way is to just keep on distilling the solution until all of the formic acid has been removed. The chemist knows that just about all the formic has been removed when there is about 300mL of thick black liquid remaining in the reaction flask and hardly any clear formic acid is dripping over into the collection flask. If one were to swirl the reaction flask, the liquid will appear syrupy and kind of coat the sides of the flask. This is more evident when the flask cools. A quick sniff of the flask may indicate that some formic is still in there, but it should be too minimal to be of any concern. [Pg.55]

If poUed, most aquaculturists would probably indicate a preference for well water. Both freshwater and saline wells are common sources of water for aquaculture. The most commonly used pretreatments of well water include temperature alteration (either heating or cooling) aeration to add oxygen or to remove or oxidize such substances as carbon dioxide, hydrogen sulfide, and iron and increasing salinity (in mariculture systems). Pretreatment may also include adjusting pH, hardness, and alkalinity through the appHcation of appropriate chemicals. [Pg.19]

Prepared feeds are marketed in various forms from very fine particles through cmmbles, flakes, and pellets. Pelleted rations may be hard, semimoist, or moist. Hard pellets typically contain less than 10% water and can be stored under cool, dry conditions for at least 90 days without deterioration of quahty. Semimoist pellets are chemically stabilized to protect them from degradation and mold if they are properly stored, while moist pellets must be frozen if they are not used immediately after manufacture. Moist feeds are produced in machines similar to sausage grinders. [Pg.21]

Phenol—formaldehyde (PF) was the first of the synthetic adhesives developed. By combining phenol with formaldehyde, which has exceptional cross-linking abiHties with many chemicals and materials, and a small amount of sodium hydroxide, a resin was obtained. The first resins soHdified as they cooled, and it was discovered that if it was ground to a powder with a small amount of additional formaldehyde and the appHcation of more heat, the mixture would Hquify and then convert to a permanently hard material. Upon combination of the powdered resin mixture with a filler material such as wood flour, the result then being placed in a mold and pressed under heat and pressure, a hard, durable, black plastic material was found to result. For many years these resulting products were called BakeHte, the trade name of the inventor. BakeHte products are still produced today, but this use accounts for only a small portion of the PF resins used. [Pg.378]

Other Cell Designs. Although not used in the United States, another important cell is based on designs developed by ICl (90). Cells of this type are used by British Nuclear Fuels pic and differ from the cells shown in Figures 2 and 3 in two ways (/) the anodes used are made of the same hard, nongraphitized carbon, but are more porous and 2) the cathodes are formed from coiled tubes and provide additional cooling (91). [Pg.127]

Water Treatment Industrial CleaningPipplications. Boiler and cooling tower waters are treated with lignosulfonates to prevent scale deposition (78). In such systems, lignosulfonates sequester hard water salts and thus prevent their deposition on metal surfaces. They can also prevent the precipitation of certain iasoluble heat-coagulable particles (79). Typical use levels for such appHcatioas range from 1—1000 ppm. [Pg.144]

Steam treatment imparts increased corrosion resistance for ferrous P/M parts. The parts are heated to 400—600°C and then exposed to superheated steam. After cooling, the parts are usually oil dipped to further increase corrosion and wear resistance, and to enhance appearance (see Corrosion and CORROSION control). Heat treated parts are seldom steam treated because annealing reduces hardness and tensile strength. [Pg.187]


See other pages where Cooling hardness is mentioned: [Pg.96]    [Pg.152]    [Pg.16]    [Pg.68]    [Pg.301]    [Pg.96]    [Pg.152]    [Pg.16]    [Pg.68]    [Pg.301]    [Pg.222]    [Pg.250]    [Pg.454]    [Pg.58]    [Pg.339]    [Pg.506]    [Pg.696]    [Pg.804]    [Pg.824]    [Pg.970]    [Pg.38]    [Pg.106]    [Pg.346]    [Pg.347]    [Pg.362]    [Pg.523]    [Pg.219]    [Pg.226]    [Pg.179]    [Pg.264]    [Pg.270]    [Pg.284]    [Pg.309]    [Pg.309]    [Pg.400]    [Pg.525]    [Pg.13]    [Pg.81]    [Pg.328]    [Pg.383]    [Pg.383]   
See also in sourсe #XX -- [ Pg.244 , Pg.524 ]




SEARCH



Cooling hard-elastic

© 2024 chempedia.info