Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conductivity measuring technique

Environmental control that fixes a known concentration of solvent in the membrane under test is also important. The reader is encouraged to consult the review, and references therein, of conductivity measurement techniques by Doyle and Rajendran. ... [Pg.329]

A last comment is due on the need for progress in the investigation tools. Further development in the study of potential DNA nanowires requires the advancement of synthesis procedures for the structural modifications, and an extensive effort in X-ray and NMR characterization. Concerning direct conductivity measurements, techniques for deposition of the molecules onto inorganic substrates and between electrodes must be optimized. Moreover,... [Pg.223]

The electrolyte conductance measurement technique, in principle, is relatively straightforward. However, the conductivity measurement of an electrolyte is often complicated by the polarization of the electrodes at the operating potential. Faradaic or charge transfer processes occur at the electrode surface, complicating the conductance measurement of the system. Thus, if possible, the conductivity electrochemical sensor should operate at a potential where no faradaic processes occur. Also, another important consideration is the formation of the double layer adjacent to each electrode surface when a potential is imposed on the electrochemical sensor. The effect of the double layer complicates the interpretation of... [Pg.86]

Finally, the effects of thermal contact resistance cannot be neglected in the realm of plastics thermal conductivity. This important heat transfer effect, which is due to the presence of an interface between the specimen and the sensor, needs to be compensated for, or eliminated. The success of a thermal conductivity measurement technique often depends on how well it addresses this issue. This issue is discussed in more detail later. [Pg.139]

The conductivity of a polymer electrolyte is an important parameter. This section addresses electrochemical conductivity techniques for the study of SPEs. The different types of conductivity are discussed, followed by an outline of the features, applicability and validity of direct current (DC) and alternating current (AC) conductivity measurements. Techniques for the identification of the individual species responsible for conduction are then briefly reviewed. [Pg.20]

It turns out that in low-viscosity blending the acdual result does depend upon the measuring technique used to measure blend time. Two common techniques, wliich do not exhaust the possibilities in reported studies, are to use an acid-base indicator and inject an acid or base into the system that will result in a color change. One can also put a dye into the tank and measure the time for color to arrive at uniformity. Another system is to put in a conductivity probe and injecl a salt or other electrolyte into the system. With any given impeller type at constant power, the circulation time will increase with the D/T ratio of the impeller. Figure 18-18 shows that both circulation time and blend time decrease as D/T increases. The same is true for impeller speed. As impeller speed is increased with any impeller, blend time and circulation time are decreased (Fig. 18-19). [Pg.1632]

Figure 14-9 also shows a flowchart for analysis of wet and dry precipitation. The process involves weight determinations, followed by pH and conductivity measurements, and finally chemical analysis for anions and cations. The pH measurements are made with a well-calibrated pH meter, with extreme care taken to avoid contaminating the sample. The metal ions Ca, Mg, Na, and are determined by flame photometry, which involves absorption of radiation by metal ions in a hot flame. Ammorda and the anions Cl, S04 , NO3 , and P04 are measured by automated colorimetric techniques. [Pg.213]

The above measurements all rely on force and displacement data to evaluate adhesion and mechanical properties. As mentioned in the introduction, a very useful piece of information to have about a nanoscale contact would be its area (or radius). Since the scale of the contacts is below the optical limit, the techniques available are somewhat limited. Electrical resistance has been used in early contact studies on clean metal surfaces [62], but is limited to conducting interfaces. Recently, Enachescu et al. [63] used conductance measurements to examine adhesion in an ideally hard contact (diamond vs. tungsten carbide). In the limit of contact size below the electronic mean free path, but above that of quantized conductance, the contact area scales linearly with contact conductance. They used these measurements to demonstrate that friction was proportional to contact area, and the area vs. load data were best-fit to a DMT model. [Pg.201]

Davidson and Hantzsch (1898) and later Engler and Hantzsch (1900) investigated this system on the supposition that it corresponds to that of the common dibasic acids. From conductivity measurements they calculated basic dissociation constants for the diazohydroxides, but it is now known that their assumptions were incorrect. In fact, at the turn of the century it was practically impossible to reach the right solution. On the one hand, Hantzsch did not have at his disposal the current poten-tiometric technique for protolytic equilibria, and on the other hand, the system of Scheme 5-1 is a special case for a dibasic acid, the principle of which was not grasped in Hantzsch s time. [Pg.90]

Several experimental techniques may be used, such as acid/base titration, electrical conductivity measurement, temperature measurement, or measurement of optical properties such as refractive index, light absorption, and so on. In each case, it is necessary to specify the manner of tracer addition, the position and number of recording stations, the sample volume of the detection system, and the criteria used in locating the end-point. Each of these factors will influence the measured value of mixing time, and therefore care must be exercised in comparing results from different investigations. [Pg.299]

Microwave measurements are typically performed at frequencies between 8 and 40 Gc/s. The sensitivity with which photogenerated charge carriers can be detected in materials by microwave conductivity measurements depends on the conductivity of the materials, but it can be very high. It has been estimated that 109-1010 electronic charge carriers per cubic centimeter can be detected. Infrared radiation can, of course, also be used to detect and measure free electronic charge carriers. The sensitivity for such measurements, however, is several orders of magnitude less and has been estimated to be around 1015 electronic charge carriers per cubic centimeter.1 Microwave techniques, therefore, promise much more sensitive access to electrochemical mechanisms. [Pg.437]

The combination of photocurrent measurements with photoinduced microwave conductivity measurements yields, as we have seen [Eqs. (11), (12), and (13)], the interfacial rate constants for minority carrier reactions (kn sr) as well as the surface concentration of photoinduced minority carriers (Aps) (and a series of solid-state parameters of the electrode material). Since light intensity modulation spectroscopy measurements give information on kinetic constants of electrode processes, a combination of this technique with light intensity-modulated microwave measurements should lead to information on kinetic mechanisms, especially very fast ones, which would not be accessible with conventional electrochemical techniques owing to RC restraints. Also, more specific kinetic information may become accessible for example, a distinction between different recombination processes. Potential-modulation MC techniques may, in parallel with potential-modulation electrochemical impedance measurements, provide more detailed information relevant for the interpretation and measurement of interfacial capacitance (see later discus-... [Pg.460]

Electrochemical impedance spectroscopy leads to information on surface states and representative circuits of electrode/electrolyte interfaces. Here, the measurement technique involves potential modulation and the detection of phase shifts with respect to the generated current. The driving force in a microwave measurement is the microwave power, which is proportional to E2 (E = electrical microwave field). Therefore, for a microwave impedance measurement, the microwave power P has to be modulated to observe a phase shift with respect to the flux, the transmitted or reflected microwave power APIP. Phase-sensitive microwave conductivity (impedance) measurements, again provided that a reliable theory is available for combining them with an electrochemical impedance measurement, should lead to information on the kinetics of surface states and defects and the polarizability of surface states, and may lead to more reliable information on real representative circuits of electrodes. We suspect that representative electrical circuits for electrode/electrolyte interfaces may become directly determinable by combining phase-sensitive electrical and microwave conductivity measurements. However, up to now, in this early stage of development of microwave electrochemistry, only comparatively simple measurements can be evaluated. [Pg.461]

In this chapter we have attempted to summarize and evaluate scientific information available in the relatively young field of microwave photoelectrochemistry. This discipline combines photoelectrochemical techniques with potential-dependent microwave conductivity measurements and succeeds in better characterizing the behavior ofphotoinduced charge carrier reactions in photoelectrochemical mechanisms. By combining photoelectrochemical measurements with microwave conductivity measurements, it is possible to obtain direct access to the measurement of interfacial rate constants. This is new for photoelectrochemistry and promises better insight into the mechanisms of photogenerated charge carriers in semiconductor electrodes. [Pg.516]

At present, the microwave electrochemical technique is still in its infancy and only exploits a portion of the experimental research possibilities that are provided by microwave technology. Much experience still has to be gained with the improvement of experimental cells for microwave studies and in the adjustment of the parameters that determine the sensitivity and reliability of microwave measurements. Many research possibilities are still unexplored, especially in the field of transient PMC measurements at semiconductor electrodes and in the application of phase-sensitive microwave conductivity measurements, which may be successfully combined with electrochemical impedance measurements for a more detailed exploration of surface states and representative electrical circuits of semiconductor liquid junctions. [Pg.519]

The fact that microwave conductivity measurements can be performed in a contact-free manner allows us to use them for quality control during the production of photoactive powders or thin layers, or for electrochemical process technology. After the buildup of sufficient knowledge, microwave conductivity measurements themselves, independent of classic electrochemical information, may be used to obtain electrochemical information in cases where conventional techniques are not convenient or accessible. [Pg.519]

Alkaline phosphatase, an enzyme with a molecular weight of approximately 86,000, has been incorporated into a polyanhydride matrix using compression molded PCPP-SA 9 91. Five percent loaded wafers, 50 mg each, were perpared, and measured 1.4 cm in diameter, with a thickness of 0.5 mm. Release experiments were then conducted using techniques similar to those described for carmustine above. As can be seen in Pig. 13, the alkaline phosphatase was released in a well-controlled manner over a prolonged period of time, just over a month, from this polyanhydride. [Pg.59]

Derivation of simple and unambiguous quantitative relations between the signal amplitude of a sensor, i.e., the value of the change of electric conductivity, work function, etc. and concentration of detected traces of admixture in the medium under study is also important for successful development of the sensor measuring technique. Theoretical considerations given in this book show that such relations exist in most simple form. The purpose of experiment consists in statistical substantiation that these dependencies rigorously hold at proper conditions. [Pg.9]

The method of semiconductor sensors allows one to determine the flux of atoms, to which the sensor was exposed, from electric conductivity measurements (provided coefficients of ionization and reflection of oxygen atoms from zinc oxide films are known). In other words, the sensor technique can be used in this case as an absolute method [21]. Indeed, variation of electric conductivity of a semiconductor film Acrpi due to adsorption is known to be caused by variation of carrier concentration An in the film, rather than by variation of their mobility / [21] ... [Pg.254]

A spin-off of all of these task forces has been the open discussions that have led to improved design considerations and effective use of resources in the conduct of field exposure studies. These task forces have evaluated a variety of exposure measuring techniques, developed study designs for conducting studies, and performed field studies in a uniform and efficient manner. The task force protocols and designs have become models for the industry, having received valuable input and approval from the regulatory community. [Pg.181]

The limitations of simple conductivity measurement can be overcome using a combined impedimetric and potentiometric technique [75]. [Pg.108]


See other pages where Conductivity measuring technique is mentioned: [Pg.19]    [Pg.366]    [Pg.236]    [Pg.19]    [Pg.366]    [Pg.236]    [Pg.509]    [Pg.396]    [Pg.26]    [Pg.192]    [Pg.437]    [Pg.438]    [Pg.493]    [Pg.509]    [Pg.25]    [Pg.310]    [Pg.18]    [Pg.278]    [Pg.113]    [Pg.59]    [Pg.9]    [Pg.649]    [Pg.535]    [Pg.206]    [Pg.272]    [Pg.57]    [Pg.266]    [Pg.354]    [Pg.382]    [Pg.361]    [Pg.64]    [Pg.1249]   
See also in sourсe #XX -- [ Pg.275 ]




SEARCH



Conductance measurements

Conductance measurment

Conductance, polymer electrical properties measurement techniques

Conduction measurements

Conductivity measurements

Conductivity measurements four-probe technique

Conductivity techniques

© 2024 chempedia.info