Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Plasticizers thermal conductivity

Plastics Thermal conductivity coefficient 10- W/(m K) Density g/cm Specific heat J/(kg K)... [Pg.62]

See also electronic plastic thermal conductivity thermally stable plastic. [Pg.260]

Finally, the effects of thermal contact resistance cannot be neglected in the realm of plastics thermal conductivity. This important heat transfer effect, which is due to the presence of an interface between the specimen and the sensor, needs to be compensated for, or eliminated. The success of a thermal conductivity measurement technique often depends on how well it addresses this issue. This issue is discussed in more detail later. [Pg.139]

Thermal Conductivity. More information is available relating thermal conductivity to stmctural variables of cellular polymers than for any other property. Several papers have discussed the relation of the thermal conductivity of heterogeneous materials in general (187,188) and of plastic foams in particular (132,143,151,189—191) with the characteristic stmctural variables of the systems. [Pg.414]

Thermal conductivity of foamed plastics has been shown to vary with thickness (197). This has been attributed to the boundary effects of the radiant contribution to heat-transfer. [Pg.414]

Heat pipes are used to perform several important heat-transfer roles ia the chemical and closely aUied iadustries. Examples iaclude heat recovery, the isothermaliziag of processes, and spot cooling ia the mol ding of plastics. In its simplest form the heat pipe possesses the property of extremely high thermal conductance, often several hundred times that of metals. As a result, the heat pipe can produce nearly isothermal conditions making an almost ideal heat-transfer element. In another form the heat pipe can provide positive, rapid, and precise control of temperature under conditions that vary with respect to time. [Pg.511]

A low (<0.4 W / (m-K)) thermal conductivity polymer, fabricated iato alow density foam consisting of a multitude of tiny closed ceUs, provides good thermal performance. CeUular plastic thermal insulation can be used in the 4—350 K temperature range. CeUular plastic materials have been developed in... [Pg.331]

Thermal Conductivity and Aging. Thernial performance is governed by gas conduction and radiation (18—20). In most ceUular plastic insulations, radiation is reduced because normal densities of use ate 4-50 kg/m and the average cell size is <0.5 mm. For open-ceU and other materials containing air (at 24°C, 7 = 0.025 W/(m-K)) this results in total values of X at 0.029-0.0039 W/(m-K). [Pg.333]

Fig. 3. Aging effect on thermal conductivity of cellular plastics A, extmded polystyrene B, unfaced polyurethane C, unfaced phenolic and D, polyurethane... Fig. 3. Aging effect on thermal conductivity of cellular plastics A, extmded polystyrene B, unfaced polyurethane C, unfaced phenolic and D, polyurethane...
Thickness. The traditional definition of thermal conductivity as an intrinsic property of a material where conduction is the only mode of heat transmission is not appHcable to low density materials. Although radiation between parallel surfaces is independent of distance, the measurement of X where radiation is significant requires the introduction of an additional variable, thickness. The thickness effect is observed in materials of low density at ambient temperatures and in materials of higher density at elevated temperatures. It depends on the radiation permeance of the materials, which in turn is influenced by the absorption coefficient and the density. For a cellular plastic material having a density on the order of 10 kg/m, the difference between a 25 and 100 mm thick specimen ranges from 12—15%. This reduces to less than 4% for a density of 48 kg/m. References 23—27 discuss the issue of thickness in more detail. [Pg.334]

Copper is universally used as the metal plating for tape because it can be easily laminated with copper and the various plastic tapes. Copper is readily etched and has excellent electrical and thermal conductivity in both electrodeposited and roUed-annealed form. The tape metal plating is normally gold- or tin-plated to ensure good bondabiUty during inner- and outer-lead bonding operations and to provide better shelf life and corrosion resistance. [Pg.529]

Cases can be classified as either hermetic or nonhermetic, based on their permeabiUty to moisture. Ceramics and metals are usually used for hermetic cases, whereas plastic materials are used for nonhermetic appHcations. Cases should have good electrical insulation properties. The coefficient of thermal expansion of a particular case should closely match those of the substrate, die, and sealing materials to avoid excessive residual stresses and fatigue damage under thermal cycling loads. Moreover, since cases must provide a path for heat dissipation, high thermal conductivity is also desirable. [Pg.530]

A 2.54-cm Styrofoam plastic foam with thermal conductivity of ca 0.03 W/ (m-K) (0.21 (Btu-in.)/(ft-b°F)) is equivalent to 61 cm of gravel. Any synthetic foam having compressive strength sufficiently high and thermal conductivity sufficiently low is effective. However, the resistance of PS-type foams to water, frost damage, and microorganisms in the sod makes them especially desirable. An interesting and important appHcation of this concept was the use of Styrofoam in the constmction of the Alaska pipeline. In this case, the foam was used to protect the permafrost. [Pg.527]

Various plastics and other nonmetallics also provide excellent compatibiHty, low friction, low wear, and good scoring resistance. Their appHcation is usually limited to slow surface speeds, however, where their low thermal conductivity does not lead to overheating. [Pg.1]

Thermal Properties. Thermal properties include heat-deflection temperature (HDT), specific heat, continuous use temperature, thermal conductivity, coefficient of thermal expansion, and flammability ratings. Heat-deflection temperature is a measure of the minimum temperature that results in a specified deformation of a plastic beam under loads of 1.82 or 0.46 N/mm (264 or 67 psi, respectively). Eor an unreinforced plastic, this is typically ca 20°C below the glass-transition temperature, T, at which the molecular mobility is altered. Sometimes confused with HDT is the UL Thermal Index, which Underwriters Laboratories estabflshed as a safe continuous operation temperature for apparatus made of plastics (37). Typically, UL temperature indexes are significantly lower than HDTs. Specific heat and thermal conductivity relate to insulating properties. The coefficient of thermal expansion is an important component of mold shrinkage and must be considered when designing composite stmctures. [Pg.264]

Bai [48] presents a linear stability analysis of plastic shear deformation. This involves the relationship between competing effects of work hardening, thermal softening, and thermal conduction. If the flow stress is given by Tq, and work hardening and thermal softening in the initial state are represented... [Pg.241]

Plastics are high-molecular-weight organic compounds of natural or mostly artificial origin. In fabrication, plastics are added with fillers, plasticizers, dyestuffs and other additives, wliich are necessary to lower the price of the material, and give it the desired properties of strength, elasticity, color, point of softening, thermal conductivity, etc. [Pg.105]

The other principal thermal properties of plastics which are relevant to design are thermal conductivity and coefficient of thermal expansion. Compared with most materials, plastics offer very low values of thermal conductivity, particularly if they are foamed. Fig. 1.10 shows comparisons between the thermal conductivity of a selection of metals, plastics and building materials. In contrast to their low conductivity, plastics have high coefficients of expansion when compared with metals. This is illustrated in Fig. 1.11 and Table 1.8 gives fuller information on the thermal properties of pl tics and metals. [Pg.32]

K — thermal conductivity of the plastic X = full or half thickness of the plastic as described above. [Pg.393]

To meet the 2001 U.S. energy standards and the 2003 phase-out of HCFCs, there is a great incentive to develop a significantly better thermal insulation. The most dramatic approach would use vacuum panels for insulating the cabinet. A number of U.S. and Japanese manufacturers have developed such panels and placed these kinds of refrigerators in homes. The panels consist of multilayer plastic envelopes filled with precipitated (fumed) silica. The claimed thermal conductivity is one-fourth that of polyurethane foam. The two major obstacles are cost and the maintenance of vacuum for twenty years. [Pg.1000]


See other pages where Plasticizers thermal conductivity is mentioned: [Pg.416]    [Pg.335]    [Pg.528]    [Pg.531]    [Pg.15]    [Pg.35]    [Pg.63]    [Pg.97]    [Pg.292]    [Pg.7]    [Pg.70]    [Pg.326]    [Pg.332]    [Pg.503]    [Pg.509]    [Pg.547]    [Pg.7]    [Pg.326]    [Pg.235]    [Pg.1127]    [Pg.3]    [Pg.26]    [Pg.139]    [Pg.140]    [Pg.10]    [Pg.816]    [Pg.612]    [Pg.675]    [Pg.675]    [Pg.88]    [Pg.116]   
See also in sourсe #XX -- [ Pg.89 ]

See also in sourсe #XX -- [ Pg.89 ]




SEARCH



High thermal conductivity plastic

Plastics, conducting

Thermal conductivity of plastics

Thermal conductivity plastics Table

Thermal conductivity, plastics

© 2024 chempedia.info