Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetic information

The rate of reaction is extremely important where degradation rates and shelf life are required. Reaction rates are an essential measurement both from a legislative requirement and as a means of quality assurance. [Pg.152]

Although thermodynamics can identify the potential for change, it cannot be used to predict the rate of change. As an illustration, consider the reactions listed below  [Pg.152]

The response of the calorimeter depends on the instrumental time constant, as given in (13). In general, useful kinetic information can be gained only when the rate of a reaction is significantly slower than the time constant. However, a mathematical correction can be made for reactions that are slightly faster than the instrument time constant.  [Pg.152]

The temperature dependence of a reaction rate is evident from the Arrhenius equation. As a rough rule of thumb, a reaction rate may be [Pg.152]

First order rate constant/s Half-life Reaction rate (%) Relative reaction rate [Pg.153]

The induction time is a subject of some controversy. It in turn is made up of two components. Firstly, there is the true induction time of nucleation, the time to the appearance of the nucleus secondly, there is the time of growth until a detectable fraction has been produced. This latter time is technique dependent, with TA methods being deemed, in general, to be insensitive. If a more sensitive technique such as microscopy or particle scattering is used then this latter time is less. There is some debate as to whether a true induction time of nucleation really exists, with some authors proposing that a sufficiently sensitive technique would detect nuclei perhaps of only a few molecules at a very early stage. The overall time is referred to as the induction time of crystallisation. [Pg.359]

For a comprehensive list of crystallisation parameters for the complete range of concentrations and polymorphs of PPP/SSS, the reader is referred to reference [64]. The induction time for nucleation is thought to relate to the difficulty or free energy of activation required for the formation of stable nuclei. However, whereas the induction time gives an indication of the free energy required to form a stable nucleus, the sharpness of the peak is indicative of the rate of crystallisation, in turn dependent on the supersaturation or supercooling below the equilibrium melting point of the particular polymorph. [Pg.359]


These reactions occur as low as 200°C. The exact temperature depends on the specific hydrocarbon that is nitrated, and reaction 8 is presumably the rate-controlling step. Reaction 9 is of minor importance in nitration with nitric acid, as indicated by kinetic information (32). [Pg.35]

A more serious problem is that we lose all kinetic information about the system until the data collection begins, and ultimately this limits the rates that can be studied. For first-order reactions we may be able to sacrifice the data contained in the first one, two, or three half-lives, provided the system amplitude is adequate that is, the remaining extent of reaction must be quantitatively detectable. However, this practice of basing kinetic analyses on the last few percentage of reaction is subject to error from unknown side reactions or analytical difficulties. [Pg.177]

Before discussing the kinds of kinetic information provided by potential energy surfaces we will briefly consider methods for calculating these surfaces, without going into detail, for theoretical calculations are outside the scope of this treatment. Detailed procedures are given by Eyring et ah There are three approaches to the problem. The most basic one is purely theoretical, in the sense that it uses only fundamental physical quantities, such as electronic charge. The next level is the semiempirical approach, which introduces experimental data into the calculations in a limited way. The third approach, the empirical one, makes extensive use of experimental results. [Pg.193]

Let us now turn to the surfaces themselves to learn the kinds of kinetic information they contain. First observe that the potential energy surface of Fig. 5-2 is drawn to be symmetrical about the 45° diagonal. This is the type of surface to be expected for a symmetrical reaction like H -I- H2 = H2 -h H, in which the reactants and products are identical. The corresponding reaction coordinate diagram in Fig. 5-3, therefore, shows the reactants and products having the same stability (energy) and the transition state appearing at precisely the midpoint of the reaction coordinate. [Pg.197]

Streicher s work indicates how useful the potentiostat has been in studying intergranular corrosion. Ideally, future data would be expanded to provide Pourbaix-type diagrams that also contain kinetic information showing various rates of attack within the general domain of intergranular corrosion. (Similar data for cases other than intergranular attack would be equally valuable.)... [Pg.1119]

Solid-state reactions have usually been studied either by isothermal or by non-isothermal methods, with few attempts to combine the advantages of these alternative and sometimes complementary approaches. For reasons stated in Chap. 3, the kinetic information obtained from isothermal studies appears to be more accurate and reliable, and these studies are emphasised in this review. Wherever appropriate, however, account is taken of non-isothermal studies as a valuable source of complementary information. [Pg.116]

Relatively little kinetic information is available concerning the decompositions of other metal sulphates. Decomposition of the lanthanide sulphates [800,801] proceeds to completion in two stages. [Pg.180]

It is apparent, from the above short survey, that kinetic studies have been restricted to the decomposition of a relatively few coordination compounds and some are largely qualitative or semi-quantitative in character. Estimations of thermal stabilities, or sometimes the relative stabilities within sequences of related salts, are often made for consideration within a wider context of the structures and/or properties of coordination compounds. However, it cannot be expected that the uncritical acceptance of such parameters as the decomposition temperature, the activation energy, and/or the reaction enthalpy will necessarily give information of fundamental significance. There is always uncertainty in the reliability of kinetic information obtained from non-isothermal measurements. Concepts derived from studies of homogeneous reactions of coordination compounds have often been transferred, sometimes without examination of possible implications, to the interpretation of heterogeneous behaviour. Important characteristic features of heterogeneous rate processes, such as the influence of defects and other types of imperfection, have not been accorded sufficient attention. [Pg.239]

The reactions of BaC03 with a number of oxides are accompanied by the evolution of C02. Attention has often been focussed on the identification of the several product phases, though some kinetic information is available. [Pg.273]

The net equation contains no kinetic information. One cannot infer that the reaction rates (v) are given as vi = [Fe2l-]2[T13+] or v2 = [ArCl][R2NH]2. Although the rates will almost certainly depend upon the concentrations of the reactants, or at least on one of them, these particular power dependences are not required. The actual form must be determined experimentally. Unlike the situation in thermodynamics, the concentration exponents in the expression for the rate of reaction are not predictable from the net chemical reaction. [Pg.3]

The kinetic information is obtained by monitoring over time a property, such as absorbance or conductivity, that can be related to the incremental change in concentration. The experiment is designed so that the shift from one equilibrium position to another is not very large. On the one hand, the small size of the concentration adjustment requires sensitive detection. On the other, it produces a significant simplification in the mathematics, in that the re-equilibration of a single-step reaction will follow first-order kinetics regardless of the form of the kinetic equation. We shall shortly examine the data workup for this and for more complex kinetic schemes. [Pg.256]

Under conditions where the rotation about the C-N bond of dimethylformamide is slow relative to the NMR time scale, the two methyl resonances will be separate singlets. Conversely, if the rotation is made to be very fast, the two methyl groups will be chemically equivalent. Their resonance will then appear as a sharp singlet. In between these extremes, kinetic information can be extracted from the line shapes. In most systems the parameter that is changed to go between these limits is the temperature. In some systems, pH or pressure has the same effect. [Pg.262]

The conclusion to be drawn is that the data set of kinetic information on reactions of Pu ions in solution with primary products of H2O radiolysis needs to be substantially... [Pg.249]

As with alternating electrical currents, phase-sensitive measurements are also possible with microwave radiation. The easiest method consists of measuring phase-shifted microwave signals via a lock-in technique by modulating the electrode potential. Such a technique, which measures the phase shift between the potential and the microwave signal, will give specific (e.g., kinetic) information on the system (see later discussion). However, it should not be taken as the equivalent of impedance measurements with microwaves. As in electrochemical impedance measurements,... [Pg.451]

The combination of photocurrent measurements with photoinduced microwave conductivity measurements yields, as we have seen [Eqs. (11), (12), and (13)], the interfacial rate constants for minority carrier reactions (kn sr) as well as the surface concentration of photoinduced minority carriers (Aps) (and a series of solid-state parameters of the electrode material). Since light intensity modulation spectroscopy measurements give information on kinetic constants of electrode processes, a combination of this technique with light intensity-modulated microwave measurements should lead to information on kinetic mechanisms, especially very fast ones, which would not be accessible with conventional electrochemical techniques owing to RC restraints. Also, more specific kinetic information may become accessible for example, a distinction between different recombination processes. Potential-modulation MC techniques may, in parallel with potential-modulation electrochemical impedance measurements, provide more detailed information relevant for the interpretation and measurement of interfacial capacitance (see later discus-... [Pg.460]

To verify that a proposed reaction mechanism agrees with experimental data, we construct the overall rate law implied by the mechanism and check to see whether it is consistent with the experimentally determined rate law. However, although the constructed rate law and the experimental rate law may be the same, the proposed mechanism may still he incorrect because some other mechanism may also lead to the same rate law. Kinetic information can only support a proposed mechanism it can never prove that a mechanism is correct. The acceptance of a suggested mechanism is more like the process of proof in an ideal court of law than a proof in mathematics, with evidence being assembled to give a convincing, consistent picture. [Pg.669]

The NMR spectra can be used to obtain kinetic information in a completely different manner from that mentioned on page 294. This method, which involves the study of NMR line shapes, depends on the fact that NMR spectra have an inherent time factor If a proton changes its environment less rapidly than 10 times per second, an NMR spectrum shows a separate peak for each position the proton assumes. For example, if the rate of rotation around... [Pg.295]

On the other hand, very few ncdels for nulticonponent systans have been reported in the literature. Apart from models for binary systems, usually restricted to "zero-one" systans (5) (6), the most detailed model of this type has been proposed by Hamielec et al. (7), with reference to batch, semibatch and continuous emilsion polymerization reactors. Notably, besides the usual kinetic informations (nonomer, conversion, PSD), the model allows for the evaluation of IWD, long and short chain brandling frequencies and gel content. Comparisons between model predictions and experimental data are limited to tulK and solution binary pwlymerization systems. [Pg.380]

Computer simulations have been useful for validating a kinetic model that Is not easily tested. The model was equally capable of describing multi-site polymerizations which can undergo either first or second order deactivation. The model parameters provided reasonably accurate kinetic information about the Initial active site distribution. Simulation results were also used as aids for Interpretation of experimental data with encouraging results. [Pg.413]

In the absence of TCE and chlorine, the possible active species are holes (h+), anion vacancies, or anions (02 ), and hydroxyl radicals (OH ). At constant illumination and oxygen concentration, we may expect h+, and O2 concentrations to be approximately constant, and the dark adsorption to be a dominant variable. If kh+, or ko2- does not vary appreciably with the contaminant structure, the rate would depend clearly on the contaminant coverage as shown in Figme 2a, and the reaction would therefore occur via Langmuir-Hinshelwood mechanism. (Note only rates with conversions below 95% are correlated here (filled circles), as the 100% conversion data contains no kinetic information). This rate vs. d>r LH plot is smoother than those for koH or koH suggesting that non-OH species (holes, anion vacancies, or O2 ) are the active species reacting with an adsorbed contaminant. [Pg.441]

The present investigations were largely motivated to show the serial-screening capabilities of the reactor concept used. The speed of process-parameter changes, consumption of small volumes only, preciseness of kinetic information, and robustness were major micro reactor properties utilized. [Pg.713]

The simplest method of coupling enzymatic reactions to electrochemical detection is to monitor an off-line reaction using FIAEC or LCEC. The enzymatic reaction is carried out in a test tube under controlled conditions with aliquots being taken at timed intervals. These aliquots are then analyzed for the electroactive product and the enzyme activity in the sample calculated from the generated kinetic information. [Pg.29]

As a first attempt to modify the code to be able to run simulations on SiH4-H2 discharges, a hybrid PlC/MC-fluid code was developed [264, 265]. It turned out in the simulations of the silane-hydrogen discharge that the PIC/MC method is computationally too expensive to allow for extensive parameter scans. The hybrid code combines the PIC/MC method and the fluid method. The electrons in the discharge were handled by the fluid method, and the ions by the PIC/MC method. In this way a large gain in computational effort is achieved, whereas kinetic information of the ions is still obtained. [Pg.68]

The disadvantage of the fluid model is that no kinetic information is obtained. Also, transport (diffusion, mobility) and rate coefficients (ionization, attachment) are needed, which can only be obtained from experiments or from kinetic calculations in simpler settings (e.g. Townsend discharges). Experimental data on... [Pg.68]


See other pages where Kinetic information is mentioned: [Pg.643]    [Pg.507]    [Pg.513]    [Pg.124]    [Pg.228]    [Pg.260]    [Pg.68]    [Pg.153]    [Pg.245]    [Pg.202]    [Pg.120]    [Pg.141]    [Pg.206]    [Pg.272]    [Pg.224]    [Pg.169]    [Pg.529]    [Pg.248]    [Pg.26]    [Pg.255]    [Pg.278]    [Pg.366]    [Pg.373]    [Pg.17]    [Pg.531]    [Pg.844]    [Pg.202]   
See also in sourсe #XX -- [ Pg.254 ]

See also in sourсe #XX -- [ Pg.152 ]




SEARCH



Interpretation of Kinetic Information

Kinetic Information through Chemical Laser Studies

Kinetic information continuous

Kinetic information importance

Kinetic information required to determine the worst case

Kinetic mechanisms thermochemical information

Kinetic studies with alternative information

Kinetics laboratory-based information

Kinetics practical information from

Kinetics, mechanistic information from

Table of Information on Hydrolysis Rates and Kinetic Parameters

Transit Time Distributions, Linear Response, and Extracting Kinetic Information from Experimental Data

© 2024 chempedia.info