Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conductivity ionic/electrical

Ionic bonding was proposed by the German physicist Walther Kossel in 1916 in or der to explain the ability of substances such as molten sodium chloride to conduct an electric current He was the son of Albrecht Kossel winner of the 1910 Nobel Prize in physiology or medi cine for early studies in nu cleic acids... [Pg.12]

Specific Conductance. The specific conductance depends on the total concentration of the dissolved ioni2ed substances, ie, the ionic strength of a water sample. It is an expression of the abiUty of the water to conduct an electric current. Freshly distilled water has a conductance of 0.5—2 ]lS/cm, whereas that of potable water generally is 50—1500 ]lS/cm. The conductivity of a water sample is measured by means of an a-c Wheatstone-bridge circuit with a null indicator and a conductance cell. Each cell has an associated constant which, when multiphed by the conductance, yields the specific conductance. [Pg.230]

When an ionic solid such as NaCl dissolves in water the solution formed contains Na+ and Cl- ions. Since ions are charged particles, the solution conducts an electric current (Figure 2.12) and we say that NaCl is a strong electrolyte. In contrast, a water solution of sugar, which is a molecular solid, does not conduct electricity. Sugar and other molecular solutes are nonelectrolytes. [Pg.37]

Ionic solids do not conduct electricity because the charged ions are fixed in position. They become good conductors, however, when melted or dissolved in water. In both cases, in the melt or solution, the ions (such as Na+ and Cl-) are free to move through the liquid and thus can conduct an electric current. [Pg.243]

The membranes also have a certain, though small ionic conductivity. The electrical resistance of membranes when referred to unit surface area is 10 to 10 Q-cm, which when allowing for the small membrane thickness (about 10 nm) corresponds to the rather high value of specific (volume) resistance of 10 to 10 Q-cm. [Pg.577]

Ionic (electrolytic) conduction of electric current is exhibited by electrolyte solutions, melts, solid electrolytes, colloidal systems and ionized gases. Their conductivity is small compared to that of metal conductors and increases with increasing temperature, as the resistance of a viscous medium acts against ion movement and decreases with increasing temperature. [Pg.100]

A well-known fact of fundamental solution science is that the presence of ions in any solution gives the solution a low electrical resistance and the ability to conduct an electrical current. The absence of ions means that the solution would not be conductive. Thus, solutions of ionic compounds and acids, especially strong acids, have a low electrical resistance and are conductive. This means that if a pair of conductive surfaces are immersed into the solution and connected to an electrical power source, such as a simple battery, a current can be detected flowing in the circuit. Alternatively, if the resistance of the solution between the electrodes were measured (with an ohmmeter), it would be low. Conductivity cells based on this simple design are in common use in nonchromatography applications to determine the quality of deionized water, for example. Deionized water should have no ions dissolved in it and thus should have a very low conductivity. The conductivity detector is based on this simple apparatus. [Pg.382]

The ions that conduct the electrical current can result from a couple of sources. They may result from the dissociation of an ionically bonded substance (a salt). If sodium chloride (NaCl) is dissolved in water, it dissociates into the sodium cation (Na+) and the chloride anion (CL). But certain covalently bonded substances may also produce ions if dissolved in water, a process called ionization. For example, acids, both inorganic and organic, will produce ions when dissolved in water. Some acids, such as hydrochloric acid (HC1), will essentially completely ionize. Others, such as acetic acid (CH3COOH), will only partially ionize. They establish an equilibrium with the ions and the unionized species (see Chapter 13 for more on chemical equilibrium). [Pg.183]

Analyzing and Concluding Did the magnesium compounds and water conduct an electric current Do the results indicate whether or not the compounds are ionic ... [Pg.32]

The electrolyte not only transports dissolved reactants to the electrode, but also conducts ionic charge between the electrodes and thereby completes the cell electric circuit, as illustrated in... [Pg.17]

Solids can be classified into four categories ionic, metallic, covalent network, and molecular. Choose one of the four categories listed and for that category identify the basic structural unit describe the nature of the force both within the unit and between units cite the basic properties of melting point, conduction of electricity, solubility, hardness, and conduction of heat for that type of solid give an example of the type of solid and describe a laboratory means of identifying the solid. [Pg.91]

A solvent, in addition to permitting the ionic charges to separate and the electrolyte solution to conduct an electrical current, also solvates the discrete ions, by ion-dipole or ion-induced dipole interactions and by more direct interactions, such as hydrogen bonding to anions or electron-pair donation to cations. Lewis acidity and basicity of the solvents affect the latter. The redox properties of the ions at an electrode depend on their being solvated, and the solvation effects electrode potentials or polarographic half-wave potentials. [Pg.86]

A variety of techniques has been employed to investigate aliovalent impurity-cation vacancy pairs and other point defects in ionic solids. Dielectric relaxation, optical absorption and emission spectroscopy, and ionic thermocurrent measurements have been most valuable ESR studies of Mn " in NaCl have shown the presence of impurity-vacancy pairs of at least five different symmetries. The techniques that have provided a wealth of information on the energies of migration, formation and other defect energies in ionic solids are diffusion and electrical conductivity measurements. Electrical conductivity in ionic solids occurs by the motion of ions through vacancies or of interstitial ions. In the case of motion through vacancies, the conductivity, a, is given by... [Pg.232]

The relationship between the intrinsic diffusivity, D, of charged interstitial ions in an ionic solid and the ionic electrical conductivity, p, due to the motion of these ions in the absence of a significant concentration gradient is given by Eq. 3.50 that is,... [Pg.204]

Conduction of electricity in ionic crystals is due to the motion of lattice defects, cither of the Schollky or Frenkel type. The mobility is given hy... [Pg.865]

A solute may be present as ions or as molecules. We can identify the form of the solute by noting whether the solution conducts an electric current. Because a current is a flow of electric charge, only solutions that contain ions conduct electricity. There is such a tiny concentration of ions in pure water (about 10-7 m) that water alone does not conduct electricity. A substance that dissolves to give a solution that conducts electricity is called an electrolyte. Electrolyte solutions (solutions of electrolytes), which conduct electricity because they contain ions, include aqueous solutions of ionic compounds, such as sodium chloride and potassium nitrate. The ions are not formed when an ionic solid dissolves they exist as separate ions in the solid but become free to move apart in the presence of water (Fig. 1.1). Acids also are electrolytes. Unlike salts, they are molecular compounds in the pure state but form ions when they dissolve. One example is hydrogen chloride, which exists as gaseous HC1 molecules. In solution, however, HCl is called hydrochloric acid and is present as hydrogen ions and chloride ions. [Pg.110]

Thus far, we ve discussed the sources, production, and properties of some important metals. Some properties, such as hardness and melting point, vary considerably among metals, but other properties are characteristic of metals in general. For instance, all metals can be drawn into wires (ductility) or beaten into sheets (malleability) without breaking into pieces like glass or an ionic crystal. Furthermore, all metals have a high thermal and electrical conductivity. When you touch a metal, it feels cold because the metal efficiently conducts heat away from your hand, and when you connect a metal wire to the terminals of a battery, it conducts an electric current. [Pg.923]

Electricity can also be generated inside a battery. A battery uses a chemical reaction to produce electricity. Inside a battery, there are two different metals in a chemical solution. A redox reaction occurs between the metals and the solution. This solution is called an electrolyte solution. An electrolyte is a substance that can conduct an electric current—the flow of electrons—when it is dissolved in water or melted. All ionic compounds are electrolytes. Most covalent compounds are not. [Pg.54]

Figure 3.16 Ionic electrical conductivity for solutions of lithium triflate in solid poly[fc (methoxyethoxyethoxy)phosphazene] ( MEEP ) is believed to occur following coordination of the etheric side groups to Li+ ions, cation-anion separation, ion transfer from one polymer to another as the polymer and side groups undergo extensive thermal motions. From Shriver and Farrington, Chem. Eng. News, 1985, 42-57 (May 20). Reprinted by permission of the American Chemical Society. Figure 3.16 Ionic electrical conductivity for solutions of lithium triflate in solid poly[fc (methoxyethoxyethoxy)phosphazene] ( MEEP ) is believed to occur following coordination of the etheric side groups to Li+ ions, cation-anion separation, ion transfer from one polymer to another as the polymer and side groups undergo extensive thermal motions. From Shriver and Farrington, Chem. Eng. News, 1985, 42-57 (May 20). Reprinted by permission of the American Chemical Society.
A comprehensive analysis of solid oxide fuel cells phenomena requires an effective multidisciplinary approach. Chemical reactions, electrical conduction, ionic conduction, gas phase mass transport, and heat transfer take place simultaneously and are tightly coupled. [Pg.52]

Surface S3 represents the boundary between the electrode and the electrolyte. Since the electrolyte is only ion conductive, the electric current leaving this boundary is zero, while continuity of the ionic current density is imposed ... [Pg.79]

Solids such as sodium chloride (NaCl) and zinc chloride (ZnCl2) are made of ions that are held together by the attractive force of these oppositely charged particles. If ionic solids are dissolved in water, their ions are separated and can conduct an electric current. This physical property of ionic solids can be used to decide if a solid is held together by ionic bonds. [Pg.182]

The transformation of /3-AgI to a-Agl is accompanied by a dramatic increase in the ionic electrical conductivity of the solid, which leaps by a factor of nearly 4000from3.4 x 10 4to 1.3 ohm- em-1. This arises because in /1-AgItheAg... [Pg.383]

When ionic salts dissolve in water, the individual ions separate. These positively and negatively charged particles in the water medium are mobile and can move from one part of a solution to another. Because of this movement, solutions of ions can conduct electricity. Electrolytes are substances which can form ions when dissolved in water and can conduct an electric current. These substances are also capable of conducting an electric current in the molten state. Nonelectrolytes are substances which do not conduct an electric current. Electrolytes may be further characterized as either strong or weak. A strong electrolyte dissociates almost completely when in a water solution it is a good conductor of electricity. A weak electrolyte has only a small fraction of its particles... [Pg.174]

Like other salt melts ionic liquids are characterized by a specific combination of physicochemical properties high ionic conductivity, low viscosity, high thermal stability compared to conventional liquid solvents, wide electrochemical windows of up to 7 V and - in most cases - extremely low vapor pressures. Due to their low vapor pressure ionic liquids are not only well suited for the application of UHV-based analytical techniques (e.g. photoelectron spectroscopy [3]), but also for use in plasma reactors with typical pressures of the order of 1 Pa up to 10 kPa. Moreover, due to their high electrical conductivity, ionic liquids may even be used as electrodes for plasmas. To date there are just a few reports on the combination of low-temperature plasmas and ionic liquids available in the literature [4—6]. Therefore, the essential aspects of experiments with ionic liquids in typical plasma reactors are discussed in this section. [Pg.260]

Normally electrode reactions take place in solutions, or sometimes in molten salts (e.g. aluminium extraction). In order to minimize the phenomenon of migration of the electroactive ions caused by the electric field (Chapter 2) and to confine the interfacial potential difference to the distance of closest approach of solvated ions to the electrode (Chapter 3), the addition of a solution containing a high concentration of inert electrolyte, called supporting electrolyte, is necessary. This has a concentration at least 100 times that of the electroactive species and is the principal source of electrically conducting ionic species. The concentration of supporting electrolyte varies normally between 0.01m and 1.0 m, the concentration of electroactive species being 5 mM or less. The... [Pg.138]

Conductor — is a qualitative term reflecting the capability of a substance to conduct an electrical -> current. Depending on the type of sole or prevailing - charge carriers, - solid materials can be classified into ionic, electronic, and mixed ionic-electronic conductors. [Pg.111]

Now that you understand the nature of the bonds in ionic compounds, can you explain some of their properties Consider electrical conductivity. Ionic compounds do not conduct electricity in their solid state. They are very good conductors in their liquid state, however, or when they are dissolved in water. To explain these properties, ask yourself two questions ... [Pg.78]

It is known that the catalyst layer is far from uniform, especially in the case of a gradient catalyst layer. Thus, profiling properties, such as conductivity, in the catalyst layer are important. Both an electronic conductor (carbon) and an ionic conductor (Nafion ) exist in the catalyst layer, which can be considered a conductive polymer. The conductive polymer electric circuit model has been applied to the catalyst layer, and an ionic conductivity profile was obtained [8], as shown in Figure 4.33. [Pg.182]


See other pages where Conductivity ionic/electrical is mentioned: [Pg.368]    [Pg.368]    [Pg.396]    [Pg.800]    [Pg.1185]    [Pg.6]    [Pg.24]    [Pg.375]    [Pg.42]    [Pg.472]    [Pg.15]    [Pg.1031]    [Pg.1037]    [Pg.42]    [Pg.4]    [Pg.140]    [Pg.32]    [Pg.14]   
See also in sourсe #XX -- [ Pg.197 , Pg.199 , Pg.200 , Pg.201 , Pg.202 , Pg.432 ]




SEARCH



Conduction, electrical ionic

Electrical conductivity in ionic solids

Electrical conductivity ionic liquid gels

Electrical conductivity ionic solutions

Electrical conductivity of ionic solutions

Ionic compounds electrical conductance

Ionic conductance

Ionic conducting

Ionic conduction

Ionic conductivity

Ionic solids electrical conductivity

© 2024 chempedia.info