Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron-pair donation

The strongly electronegative (p. 49) chlorine atom becomes a chloride ion, the proton accepting the electron pair donated by the nitrogen atom. A similar reaction occurs when ammonia is passed into water, but to a much lesser extent as oxygen in water is a poorer donor of the electron pair ... [Pg.43]

Electron pair donation stabilizes the carbonyl group and makes it less reactive toward nucleophilic acyl substitution... [Pg.874]

The hypothesis that electron-pair donation from the a atom will stabilize this transition state leads to the difficulty that the attacking atom must carry more bonds than conventional valence bond symbolism admits. Despite this problem, the general idea is expressed by 7 and its relationship to 6 by resonance. It is possible that transition state stabilization can be obtained in this way by rehybridization of the entire molecule. Klopman et al. suggest that the a effect arises from... [Pg.356]

In his valence bond theory (VB), L. Pauling extended the idea of electron-pair donation by considering the orbitals of the metal which would be needed to accommodate them, and the stereochemical consequences of their hybridization (1931-3). He was thereby able to account for much that was known in the 1930s about the stereochemistry and kinetic behaviour of complexes, and demonstrated the diagnostic value of measuring their magnetic properties. Unfortunately the theory offers no satisfactory explanation of spectroscopic properties and so was... [Pg.921]

In Eq. (10-17), parameters a and b measure the sensitivity of the reaction to these nucleophilic parameters. Since H measures proton basicity and En the electron-donation ability, this treatment models nucleophilicity as a combination of electron loss and electron pair donation. The Edwards equation is thus an oxibase scale of nucleophilic reactivity. Table 10-5 summarizes the nucleophilic parameters. [Pg.231]

C21-0009. Draw molecular pictures similar to those in Figure 21-5 that illustrate the electron pair donation that occurs when acetyl chloride (CH3 COCl, formed from acetic acid by replacing —OH with —Cl), forms an adduct with aluminum chloride. [Pg.1521]

Since the most direct evidence for specihc solvation of a carbene would be a spectroscopic signature distinct from that of the free carbene and also from that of a fully formed ylide, TRIR spectroscopy has been used to search for such car-bene-solvent interactions. Chlorophenylcarbene (32) and fluorophenylcarbene (33) were recently examined by TRIR spectroscopy in the absence and presence of tetrahydrofuran (THF) or benzene. These carbenes possess IR bands near 1225 cm that largely involve stretching of the partial double bond between the carbene carbon and the aromatic ring. It was anticipated that electron pair donation from a coordinating solvent such as THF or benzene into the empty carbene p-orbital might reduce the partial double bond character to the carbene center, shifting this vibrational frequency to a lower value. However, such shifts were not observed, perhaps because these halophenylcarbenes are so well stabilized that interactions with solvent are too weak to be observed. The bimolecular rate constant for the reaction of carbenes 32 and 33 with tetramethylethylene (TME) was also unaffected by THF or benzene, consistent with the lack of solvent coordination in these cases. °... [Pg.199]

Perhaps the greatest area in which the Lewis acid-base approach is most useful is that of coordination chemistry. In the formation of coordination compounds, Lewis acids such as Cr3+, Co3+, Pt2+, or Ag+ bind to a certain number (usually 2, 4, or 6) of groups as a result of electron pair donation and acceptance. Typical electron pair donors include H20, NH3, F , CN , and many other molecules and ions. The products, known as coordination compounds or coordination complexes, have definite structures that are predictable in terms of principles of bonding. Because of the importance of this area of inorganic chemistry, Chapters 16 through 22 in this book are devoted to coordination chemistry. [Pg.309]

As we have seen, the Lewis theory of acid-base interactions based on electron pair donation and acceptance applies to many types of species. As a result, the electronic theory of acids and bases pervades the whole of chemistry. Because the formation of metal complexes represents one type of Lewis acid-base interaction, it was in that area that evidence of the principle that species of similar electronic character interact best was first noted. As early as the 1950s, Ahrland, Chatt, and Davies had classified metals as belonging to class A if they formed more stable complexes with the first element in the periodic group or to class B if they formed more stable complexes with the heavier elements in that group. This means that metals are classified as A or B based on the electronic character of the donor atom they prefer to bond to. The donor strength of the ligands is determined by the stability of the complexes they form with metals. This behavior is summarized in the following table. [Pg.313]

Coordination compounds are also known as coordination complexes, complex compounds, or simply complexes. The essential feature of coordination compounds is that coordinate bonds form between electron pair donors, known as the ligands, and electron pair acceptors, the metal atoms or ions. The number of electron pairs donated to the metal is known as its coordination number. Although many complexes exist in which the coordination numbers are 3, 5, 7, or 8, the majority of complexes exhibit coordination numbers of 2, 4, or 6. [Pg.577]

From a structural point of view the complexes with tertiary stibine ligands are very uniform. The predominant type is rj coordination (type 1), with electron pair donation of the Sb atom to the metal centre.1,2,6,8 However, complexes with bridging stibine ligands (type 2) are also known.13,14 (Scheme 1). [Pg.96]

To see the effects of alteration in number of alkyne electron-pair donations, let us compare the four-electron ML2 Ir(HCCH)+ complex in Fig. 4.86(b) with the corresponding two-electron ML Au(HCCH)+ complex,... [Pg.532]

In isolation the electron distribution in the trivalent chromium (III) ion consists of three unpaired electrons in the d shell, as indicated in line (a) of Table 5.1. In line (b) the six electron pairs donated to the central chromium atom by oxygen atoms of water molecules give rise to sp3d2 hybridisation. This is characteristic of an octahedral structure. A similar situation arises with the trivalent cobalt(III) complex in line (e), where each of the three t2g levels is doubly occupied by an electron pair from each cyano ligand. [Pg.237]

Electron-pair donation to the metal, removing the possibility of the low-lying n — it excited state, which would cause the reagent itself to be nonfluorescent. [Pg.70]

Deprotonation provides the necessary electron push to kick out the electron pair joining C(6) with the nitrobenzene oxygen. If, however, N(l) is alkylated (as with the nucleosides and nucleotides), OH catalysis is much less efficient since it now proceeds by deprotonation from N(3) (with the uracils) or from the amino group at C(4) (with the cytosines). In these cases the area of deprotonation is separated from the reaction site by a (hydroxy)methylene group which means that the increase in electron density that results from deprotonation at N(3) is transferable to the reaction site only through the carbon skeleton (inductive effect), which is of course inefficient as compared to the electron-pair donation from N(l) (mesomeric effect) [26]. Reaction 15 is a 1 1 model for the catalytic effect of OH on the heterolysis of peroxyl radicals from pyrimidine-6-yl radicals (see Sect. 2.4). [Pg.134]

Table 4.8 Basicity (Electron Pair-Donating Tendency) of Some Ions and Molecules R is an aUcyl or aryl group)... [Pg.144]

The number of electron pairs donated by a single ligand to a specific central atom is termed the denticity. Ligands that donate one pair are monodentate, those that donate two are didentate, those that donate three are tridentate, and so on. [Pg.53]

A solvent, in addition to permitting the ionic charges to separate and the electrolyte solution to conduct an electrical current, also solvates the discrete ions, by ion-dipole or ion-induced dipole interactions and by more direct interactions, such as hydrogen bonding to anions or electron-pair donation to cations. Lewis acidity and basicity of the solvents affect the latter. The redox properties of the ions at an electrode depend on their being solvated, and the solvation effects electrode potentials or polarographic half-wave potentials. [Pg.86]

Some other classification schemes are provided in a work by Kolthoff (Kolthoff, 1974). It is according to the polarity and is described by the relative permittivity (dielectric constant) e, the dipole moment p (in 10 ° C.m), and the hydrogen-bond donation ability Another suggested classification (Parker, 1969) stresses the acidity and basicity (relative to water) of the solvents. A third one (Chastrette, 1979), stresses the hydrogen-bonding and electron-pair donation abilities, the polarity, and the extent of self-association. A fourth is a chemical constitution scheme (Riddick et al., 1986). The differences among these schemes are mainly semantic ones and are of no real consequence. Marcus presents these clearly (Marcus, 1998). [Pg.130]


See other pages where Electron-pair donation is mentioned: [Pg.328]    [Pg.922]    [Pg.54]    [Pg.96]    [Pg.495]    [Pg.592]    [Pg.593]    [Pg.603]    [Pg.611]    [Pg.611]    [Pg.618]    [Pg.304]    [Pg.233]    [Pg.239]    [Pg.239]    [Pg.54]    [Pg.823]    [Pg.96]    [Pg.48]    [Pg.76]    [Pg.245]    [Pg.85]    [Pg.54]    [Pg.172]    [Pg.369]    [Pg.16]    [Pg.54]    [Pg.174]    [Pg.174]    [Pg.708]   
See also in sourсe #XX -- [ Pg.71 ]




SEARCH



Electron donation

© 2024 chempedia.info