Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Effective electrode potential

Gibbs values and the effective electrode potential follows the Nemst equation (see section C2.11). For the oxidation (anodic) reaction, the potential (E ) of the Nemst equation can be written as ... [Pg.2715]

The unique aspect of electrochemistry lies in the ability to change the electrode potential and thus concentrate an applied perturbation right at the interface. Electric fields of 10 V/cm can be generated electrochemically with a half-lemon, scraped zinc (since 1983) penny, and copper wire as opposed to the massive Van de Craaff generator and electric power plant required for non-electrochemical approaches to the same field strength. If UHV models are to provide useful molecular-scale insight into electrochemistry, some means of controlling the effective electrode potential of the models must be developed. [Pg.76]

A solvent, in addition to permitting the ionic charges to separate and the electrolyte solution to conduct an electrical current, also solvates the discrete ions, by ion-dipole or ion-induced dipole interactions and by more direct interactions, such as hydrogen bonding to anions or electron-pair donation to cations. Lewis acidity and basicity of the solvents affect the latter. The redox properties of the ions at an electrode depend on their being solvated, and the solvation effects electrode potentials or polarographic half-wave potentials. [Pg.86]

One of the most important, yet latent, applications of controlled-potential electrolysis is electrochemical synthesis. Although electrolysis has been used for more than a century to synthesize various metals from their salts, application to other types of chemical synthesis has been extremely limited. Before the advent of controlled-potential methods, the selectivity possible by classical electrolysis precluded fine control of the products. The only control was provided by appropriate selection of electrode material, solution acidity, and supporting electrolyte. By these means the effective electrode potential could be limited to minimize the electrolysis of the supporting electrolyte or the solvent. Today potentiostats and related controlled-potential-electrolysis instrumentation are commercially available that provide effective control of the potential of the working electrode to 1 mV, and a driving force of up to 100 V for currents of up to several amperes. Through such instrumentation electrochemical syn-... [Pg.133]

When the metal electrode has a negative charge, qm <0, q><0, and cations will be attracted to the electrode surface. When the electrode has a positive charge, the opposite effect will hold, qm > 0,

0, and cations will be repelled. The potential difference driving the electrode reaction, the effective electrode potential, E, is qF - q> - (fi, where metal potential. The overall effect of double layer on kinetics is that the averaged reaction rate, i, is a function of potential, through variation of

electrolyte concentration since

[Pg.10]

Stem layer adsorption was involved in the discussion of the effect of ions on f potentials (Section V-6), electrocapillary behavior (Section V-7), and electrode potentials (Section V-8) and enters into the effect of electrolytes on charged monolayers (Section XV-6). More speciflcally, this type of behavior occurs in the adsorption of electrolytes by ionic crystals. A large amount of wotk of this type has been done, partly because of the importance of such effects on the purity of precipitates of analytical interest and partly because of the role of such adsorption in coagulation and other colloid chemical processes. Early studies include those by Weiser [157], by Paneth, Hahn, and Fajans [158], and by Kolthoff and co-workers [159], A recent calorimetric study of proton adsorption by Lyklema and co-workers [160] supports a new thermodynamic analysis of double-layer formation. A recent example of this is found in a study... [Pg.412]

The proof of protection is more difficult to establish in this case for two reasons. First, the object is to restore passivity to the rebar and not to render it virtually immune to corrosion. Second, it is difficult to measure the true electrode potential of rebars under these conditions. This is because the cathodic-protection current flowing through the concrete produces a voltage error in the measurements made (see below). For this reason it has been found convenient to use a potential decay technique to assess protection rather than a direct potential measurement. Thus a 100 mV decay of polarisation in 4 h once current has been interrupted has been adopted as the criterion for adequate protection. It will be seen that this proposal does not differ substantially from the decay criterion included in Table 10.3 and recommended by NACE for assessing the full protection of steel in other environments. Of course, in this case the cathodic polarisation is intended to inhibit pit growth and restore passivity, not to establish effective immunity. [Pg.123]

Fig. 19.16 Schematic E — I diagrams of local cell action on stainless steel in CUSO4 + H2SO4 solution showing the effect of metallic copper on corrosion rate. C and A are the open-circuit potentials of the local cathodic and anodic areas and / is the corrosion current. The electrode potentials of a platinised-platinum electrode and metallic copper immersed in the same solution as the stainless steel are indicated by arrows, (a) represents the corrosion of stainless steel in CUSO4 -I- H2 SO4, (b) the rate when copper is introduced into the acid, but is not in contact with the steel, and (c) the rate when copper is in contact with the stainless steel... Fig. 19.16 Schematic E — I diagrams of local cell action on stainless steel in CUSO4 + H2SO4 solution showing the effect of metallic copper on corrosion rate. C and A are the open-circuit potentials of the local cathodic and anodic areas and / is the corrosion current. The electrode potentials of a platinised-platinum electrode and metallic copper immersed in the same solution as the stainless steel are indicated by arrows, (a) represents the corrosion of stainless steel in CUSO4 -I- H2 SO4, (b) the rate when copper is introduced into the acid, but is not in contact with the steel, and (c) the rate when copper is in contact with the stainless steel...
The metallic electrode materials are characterized by their Fermi levels. The position of the Fermi level relative to the eneigetic levels of the organic layer determines the potential barrier for charge carrier injection. The workfunction of most metal electrodes relative to vacuum are tabulated [103]. However, this nominal value will usually strongly differ from the effective workfunction in the device due to interactions of the metallic- with the organic material, which can be of physical or chemical nature [104-106]. Therefore, to calculate the potential barrier height at the interface, the effective work function of the metal and the effective ionization potential and electron affinity of the organic material at the interface have to be measured [55, 107],... [Pg.160]

The silver reductor has a relatively low reduction potential (the Ag/AgCl electrode potential in 1M hydrochloric acid is 0.2245 volt), and consequently it is not able to effect many of the reductions which can be made with amalgamated zinc. The silver reductor is preferably used with hydrochloric acid solutions, and this is frequently an advantage. The various reductions which can be effected with the silver and the amalgamated zinc reductors are summarised in Table 10.11. ... [Pg.414]

In view of the problems referred to above in connection with direct potentiometry, much attention has been directed to the procedure of potentio-metric titration as an analytical method. As the name implies, it is a titrimetric procedure in which potentiometric measurements are carried out in order to fix the end point. In this procedure we are concerned with changes in electrode potential rather than in an accurate value for the electrode potential with a given solution, and under these circumstances the effect of the liquid junction potential may be ignored. In such a titration, the change in cell e.m.f. occurs most rapidly in the neighbourhood of the end point, and as will be explained later (Section 15.18), various methods can be used to ascertain the point at which the rate of potential change is at a maximum this is at the end point of the titration. [Pg.549]

The most widely used reference electrode, due to its ease of preparation and constancy of potential, is the calomel electrode. A calomel half-cell is one in which mercury and calomel [mercury(I) chloride] are covered with potassium chloride solution of definite concentration this may be 0.1 M, 1M, or saturated. These electrodes are referred to as the decimolar, the molar and the saturated calomel electrode (S.C.E.) and have the potentials, relative to the standard hydrogen electrode at 25 °C, of 0.3358,0.2824 and 0.2444 volt. Of these electrodes the S.C.E. is most commonly used, largely because of the suppressive effect of saturated potassium chloride solution on liquid junction potentials. However, this electrode suffers from the drawback that its potential varies rapidly with alteration in temperature owing to changes in the solubility of potassium chloride, and restoration of a stable potential may be slow owing to the disturbance of the calomel-potassium chloride equilibrium. The potentials of the decimolar and molar electrodes are less affected by change in temperature and are to be preferred in cases where accurate values of electrode potentials are required. The electrode reaction is... [Pg.551]

Values of the electrode potentials for the more common reference electrodes are collected in Table 15.1 together with an indication of the effect of temperature for the most important electrodes. [Pg.553]


See other pages where Effective electrode potential is mentioned: [Pg.76]    [Pg.76]    [Pg.81]    [Pg.262]    [Pg.253]    [Pg.255]    [Pg.572]    [Pg.245]    [Pg.295]    [Pg.296]    [Pg.138]    [Pg.76]    [Pg.76]    [Pg.81]    [Pg.262]    [Pg.253]    [Pg.255]    [Pg.572]    [Pg.245]    [Pg.295]    [Pg.296]    [Pg.138]    [Pg.314]    [Pg.593]    [Pg.3060]    [Pg.446]    [Pg.125]    [Pg.48]    [Pg.527]    [Pg.281]    [Pg.2435]    [Pg.227]    [Pg.1206]    [Pg.196]    [Pg.216]    [Pg.217]    [Pg.331]    [Pg.464]    [Pg.803]    [Pg.1148]    [Pg.1159]    [Pg.471]    [Pg.998]    [Pg.623]    [Pg.32]    [Pg.33]    [Pg.68]   


SEARCH



EFFECT OF CONCENTRATIONS (OR PARTIAL PRESSURES) ON ELECTRODE POTENTIALS

Effect of Complex Formation on Electrode Potentials

Effect of Concentration on Electrode Potentials

Effect of pH on Electrode Potential

Effective electrode potential control

Electrode Potential and its Effect on Crack Growth

Electrode potential, effect

Electrode potential, effect anodic dissolution

Electrode potential, effect anodic oxide formation

Electrode potential, effect current oscillation

Electrode potential, effect dissolution mechanism

Electrode potential, effect etch rate

The effect of electrode potential

© 2024 chempedia.info