Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Concentration rate dependence

Studies of the amine concentration rate dependence show that the reactions are strictly third-order in amine for DMSO <2%. For DMSO constants >10% the reactions show the classical behaviour usually found in base-catalysed SjvAr180. The specific solvent effects observed for small additions of the HBD co-solvent are consistent with the formation of the mixed aggregate, and a linear correlation was found between kA and [DMSO], shown by equation 36, which expresses that the third-order term is more affected by the small additions of DMSO than the fourth-order term. Equation 36 is valid for [DMSO] <2% (0.282 M). [Pg.1276]

Stripping voltammetry involves the pre-concentration of the analyte species at the electrode surface prior to the voltannnetric scan. The pre-concentration step is carried out under fixed potential control for a predetennined time, where the species of interest is accumulated at the surface of the working electrode at a rate dependent on the applied potential. The detemiination step leads to a current peak, the height and area of which is proportional to the concentration of the accumulated species and hence to the concentration in the bulk solution. The stripping step can involve a variety of potential wavefomis, from linear-potential scan to differential pulse or square-wave scan. Different types of stripping voltaimnetries exist, all of which coimnonly use mercury electrodes (dropping mercury electrodes (DMEs) or mercury film electrodes) [7, 17]. [Pg.1932]

When large concentrations of water are added to the solutions, nitration according to a zeroth-order law is no longer observed. Under these circumstances, water competes successfully with the aromatic for the nitronium ions, and the necessary condition for zeroth-order reaction, namely that all the nitronium ions should react with the aromatic as quickly as they are formed, no longer holds. In these strongly aqueous solutions the rates depend on the concentrations and reactivities of the aromatic compound. This situation is reminiscent of nitration in aqueous nitric acid in which partial zeroth-order kinetics could be observed only in the reactions of some extremely reactive compounds, capable of being introduced into the solution in high concentrations ( 2.2.4). [Pg.44]

The anticatalytic effect of nitrous acid in nitration The effect of nitrous acid was first observed for zeroth-order nitrations in nitromethane ( 3.2). The effect was a true negative catalysis the kinetic order was not affected, and nitrous acid was neither consumed nor produced by the nitration. The same was true for nitration in acetic acid. In the zeroth-order nitrations the rate depended on the reciprocal of the square root of the concentration of nitrous acid =... [Pg.55]

The kinetics of the nitration of benzene, toluene and mesitylene in mixtures prepared from nitric acid and acetic anhydride have been studied by Hartshorn and Thompson. Under zeroth order conditions, the dependence of the rate of nitration of mesitylene on the stoichiometric concentrations of nitric acid, acetic acid and lithium nitrate were found to be as described in section 5.3.5. When the conditions were such that the rate depended upon the first power of the concentration of the aromatic substrate, the first order rate constant was found to vary with the stoichiometric concentration of nitric acid as shown on the graph below. An approximately third order dependence on this quantity was found with mesitylene and toluene, but with benzene, increasing the stoichiometric concentration of nitric acid caused a change to an approximately second order dependence. Relative reactivities, however, were found to be insensitive... [Pg.224]

Rate of substitution is independent of both concentration and nature of nucleophile Nucleophile does not participate until after rate determining step (Section 8 8) Rate depends on both nature of nucleophile and its concentration (Sections 8 3 and 8 7)... [Pg.356]

First-Order Reactions The simplest case is a first-order reaction in which the rate depends on the concentration of only one species. The best example of a first-order reaction is an irreversible thermal decomposition, which we can represent as... [Pg.751]

When results are compared for polymerization experiments carried out at different frequencies of blinking, it is found that the rate depends on that frequency. To see how this comes about, we must examine the variation of radical concentration under non-stationary-state conditions. This consideration dictates the choice of photoinitiated polymerization, since in the latter it is almost possible to turn on or off—with the blink of a light—the source of free radicals. The qualifying almost in the previous sentence is actually the focus of our attention, since a short but finite amount of time is required for the radical concentration to reach [M-] and a short but finite amount of time is required for it to drop back to zero after the light goes out. [Pg.374]

This is essentially a corrosion reaction involving anodic metal dissolution where the conjugate reaction is the hydrogen (qv) evolution process. Hence, the rate depends on temperature, concentration of acid, inhibiting agents, nature of the surface oxide film, etc. Unless the metal chloride is insoluble in aqueous solution eg, Ag or Hg ", the reaction products are removed from the metal or alloy surface by dissolution. The extent of removal is controUed by the local hydrodynamic conditions. [Pg.444]

Disinfection. Ozone is a more effective broad-spectmm disinfectant than chlorine-based compounds (105). Ozone is very effective against bacteria because even concentrations as low as 0.01 ppm are toxic to bacteria. Whereas disinfection of bacteria by chlorine involves the diffusion of HOGl through the ceU membrane, disinfection by ozone occurs with the lysing (ie, mpture) of the ceU wall. The disinfection rate depends on the type of organism and is affected by ozone concentration, temperature (106), pH, turbidity, clumping of organisms, oxidizable substances, and the type of contactor employed (107). The presence of oxidizable substances in ordinary water can retard disinfection until the initial ozone demand is satisfied, at which point rapid disinfection is observed. [Pg.501]

With several springs, which function as torque gauges, and a number of spindles, viscosities can be measured up to 10 mPa-s with the Brookfield viscometer. The shear rates depend on the model and the sensor system they are ca 0.1 100 for the disk spindles, <132 for concentric cylinders, and <1500 for the cone—plate forlow viscosity samples. Viscosities at very low (ca 10 — 1 )) shear rates can be measured with the concentric... [Pg.188]

The dissolution of soluble sihcates is of considerable commercial importance. Its rate depends on the glass ratio, sohds concentration, temperature, pressure, and glass particle size. Commercially, glasses are dissolved in either batch atmospheric or pressure dissolvers or continuous atmospheric processes. Dissolution of sodium sihcate glass proceeds through a two-step mechanism that involves ion exchange (qv) and network breakdown (18). [Pg.4]

Iron, cobalt, and nickel catalyze this reaction. The rate depends on temperature and sodium concentration. At —33.5°C, 0.251 kg sodium is soluble in 1 kg ammonia. Concentrated solutions of sodium in ammonia separate into two Hquid phases when cooled below the consolute temperature of —41.6°C. The compositions of the phases depend on the temperature. At the peak of the conjugate solutions curve, the composition is 4.15 atom % sodium. The density decreases with increasing concentration of sodium. Thus, in the two-phase region the dilute bottom phase, low in sodium concentration, has a deep-blue color the light top phase, high in sodium concentration, has a metallic bronze appearance (9—13). [Pg.162]

Materials of Construction. Glass has excellent corrosion-resistance to wet or dry bromine. Lead is very usefiil for bromine service if water is less than 70 ppm. The bromine corrosion rate increases with concentrations of water and organics. Tantalum and niobium have excellent corrosion-resistance to wet or dry bromine. Nickel has usefiil resistance for dry bromine but is rapidly attacked by wet bromine. The fluoropolymers Kynar, Halar, and Teflon are highly resistant to bromine but are somewhat permeable. The rate depends on temperature, pressure, and stmcture (density) of fluoropolymer (63). [Pg.288]

With the addition of increasing amounts of electrolyte this variance decreases and an approximate linear relationship between internal and external pH exists in a 1 Af electrolyte solution. The cell-0 concentration is dependent on the internal pH, and the rate of reaction of a fiber-reactive dye is a function of cell-0 (6,16). Thus the higher the concentration of cell-0 the more rapid the reaction and the greater the number of potential dye fixation sites. [Pg.355]

Except as an index of respiration, carbon dioxide is seldom considered in fermentations but plays important roles. Its participation in carbonate equilibria affects pH removal of carbon dioxide by photosynthesis can force the pH above 10 in dense, well-illuminated algal cultures. Several biochemical reactions involve carbon dioxide, so their kinetics and equilibrium concentrations are dependent on gas concentrations, and metabolic rates of associated reactions may also change. Attempts to increase oxygen transfer rates by elevating pressure to get more driving force sometimes encounter poor process performance that might oe attributed to excessive dissolved carbon dioxide. [Pg.2139]

Fuels such as diesel and kerosene readily absorb hydrocarbon vapors, the total uptake and absorption rate depending on both chemical and physical factors. If a soluble test gas is introduced above a charged test oil the concentration of flammable test gas therefore decreases with time. Liquid mist and spray produced by charged liquid increase the absorption rate relative to a quiescent liquid surface. As discussed in A-5-4, absorption could lead to an underestimation of test gas MIE near the liquid surface unless the rate of test gas introduction is sufficiently high to offset the rate of removal. Table 3-8.1.2 shows solubilities of a selection of gases in a mineral-based transformer oil at ambient temperature and pressure [200]. [Pg.69]

Because the nucleophile is intimately involved in the rate-determining step, not only will the rate depend on its concentration, but the nature of the nucleophile will be very important in determining the rate of the reaction. This is in marked contrast to the ionization mechanism, in wiiich the identity and concentration of the nucleophile do not affect the rate of the reaction. [Pg.269]

Liquid Sorption. If a moist gas is passed through sprays of a liquid sorbent, such as lithium chloride or an ethylene glycol solution, moisture is removed from the air at a rate depending on the vapor pressure difference. This is a function of the absorbent concentration and is maintained at the required level by a regeneration cycle. The regeneration process is continuous and is achieved by allowing a percentage of the chemical into the exhaust-heated air. [Pg.724]

The data plotted in the figure clearly support the predicted positive dependence of crystal size on agitation rate. Precipitation in the crystal film both enhances mass transfer and depletes bulk solute concentration. Thus, in the clear film model plotted by broken lines, bulk crystal sizes are initially slightly smaller than those predicted by the crystal film model but quickly become much larger due to increased yield. Taken together, these data imply that while the initial mean crystal growth rate and mixing rate dependence of size are... [Pg.239]

Sections 3.1 and 3.2 considered this problem Given a complex kinetic scheme, write the differential rate equations find the integrated rate equations or the concentration-time dependence of reactants, intermediates, and products and obtain estimates of the rate constants from experimental data. Little was said, however, about how the kinetic scheme is to be selected. This subject might be dismissed by stating that one makes use of experimental observations combined with chemical intuition to postulate a reasonable kinetic scheme but this is not veiy helpful, so some amplification is provided here. [Pg.115]

Click Coached Problems for a self-study simulation module on rate dependence nn concentration. [Pg.287]

Rate depends on concentration, but rate constant does not. [Pg.288]

First law of thermodynamics The statement that the change in energy, AE, of a system, is the sum of the heat flow into the system, q, and the work done on the system, w, 214-217,223q First order reaction A reaction whose rate depends upon reactant concentration raised to the first power, 292-295, 316-317q... [Pg.687]

Second law of thermodynamics A basic law of nature, one form of which states that all spontaneous processes occur with an increase in entropy, 457 Second order reaction A reaction whose rate depends on the second power of reactant concentration, 289,317q gas-phase, 300t... [Pg.696]


See other pages where Concentration rate dependence is mentioned: [Pg.50]    [Pg.39]    [Pg.340]    [Pg.333]    [Pg.171]    [Pg.350]    [Pg.258]    [Pg.318]    [Pg.136]    [Pg.334]    [Pg.508]    [Pg.190]    [Pg.423]    [Pg.323]    [Pg.340]    [Pg.78]    [Pg.226]    [Pg.943]    [Pg.1280]    [Pg.161]    [Pg.422]    [Pg.152]    [Pg.8]   
See also in sourсe #XX -- [ Pg.4 , Pg.5 , Pg.6 , Pg.7 , Pg.8 , Pg.9 , Pg.10 , Pg.11 , Pg.12 ]




SEARCH



Concentrated dependence

Concentration dependence

Concentration dependence of reaction rates

Concentration dependency

Concentration-Dependent Term of a Rate Equation

Condensation rate concentration dependence

Dependence of Enzyme Reaction Rate on Substrate Concentration

Dependence of Rate on Concentration

Dependence of Reaction Rate on Reactant Concentration

Growth rate, linear, concentration dependence

Rate concentrations

Rate constant apparent concentration dependence

Rate dependence

Rate dependency

Reaction rate dependence on concentrations

© 2024 chempedia.info