Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Concentration dialysis

Di Chiara G, Tanda G, Frau R, Carboni E (1983) On the preferential release of dopamine in the nucleus accumbens by amphetamine further evidence obtained by vertically implanted concentric dialysis probes. [Pg.379]

In addition to the vapor diffusion method described previously, other techniques such as the batch and micro-batch methods, bulk and micro dialysis, free interface diffusion, liquid bridge, and concentration dialysis have also been developed to produce crystals for x-ray diffraction analysis (see McPherson, 1982 and McPherson, 1999). [Pg.13]

Davison AM, Walker GS, Oli H, et al Water supply aluminium concentration, dialysis dementia, and effect of reverse-osmosis water treatment. Lancet 2 785-787,1982 Dettori P, LaGreca G, Biasioli S, et al Changes of cerebral density in dialyzed patients. Neuroradiology 23 95-99, 1982... [Pg.112]

The major advantage of the concentric dialysis probe (as compared to U-shaped or transverse probes) is its small diameter. Because of this, the rat brain suffers minimal implantation damage and it is possible to achieve better spatial resolution of sampling of discrete brain regions Furthermore, the vertical implantation of this probe allows concomitant measurement of electrical transmission m the dialyzed field by coimplanted electrodes according to well-defined stereotaxic coordinates. [Pg.246]

Of medical and biotechnical importance are the thicker homogeneous gel membranes, such as Cuprophane , which are used in the artificial kidney and/or concentration dialysis. With the Cuprophane membranes, diffosional nugration, driven by concentration differences across the membrane, effects flie transport of the various species across the membrane and little, if any, pressure differential is applied. [Pg.127]

This is an analysis frequently conducted on oil lubricants. Generally, the additive is known and its concentration can be followed by direct comparison of the oil with additive and the base stock. For example, concentrations of a few ppm of dithiophosphates or phenols are obtained with an interferometer. However, additive oils today contain a large number of products their identification or their analysis by IR spectrometry most often requires preliminary separation, either by dialysis or by liquid phase chromatography. [Pg.62]

Electro dialysis is used widely to desalinate brackish water, but this is by no means its only significant appHcation. In Japan, which has no readily available natural salt brines, electro dialysis is used to concentrate salt from seawater. The process is also used in the food industry to deionize cheese whey, and in a number of poUution-control appHcations. [Pg.82]

Desalination. Desalination of seawater and brackish water has been and, as of the mid-1990s, is the primary use of RO. Driven by a need for potable water in areas of the world where there is a shortage, this industry has developed. Desalination involves the reduction of the total dissolved soHds (IDS) concentration to less than 200 mg/L. RO offers several advantages over other possible desalination processes such as distillation (qv), evaporation (qv), and electro dialysis. The primary advantage of RO over the traditionally used method of distillation is the energy savings that is afforded by the lack of a phase change in RO. [Pg.154]

Films or membranes of silkworm silk have been produced by air-drying aqueous solutions prepared from the concentrated salts, followed by dialysis (11,28). The films, which are water soluble, generally contain silk in the silk I conformation with a significant content of random coil. Many different treatments have been used to modify these films to decrease their water solubiUty by converting silk I to silk II in a process found usehil for enzyme entrapment (28). Silk membranes have also been cast from fibroin solutions and characterized for permeation properties. Oxygen and water vapor transmission rates were dependent on the exposure conditions to methanol to faciUtate the conversion to silk II (29). Thin monolayer films have been formed from solubilized silkworm silk using Langmuir techniques to faciUtate stmctural characterization of the protein (30). ResolubiLized silkworm cocoon silk has been spun into fibers (31), as have recombinant silkworm silks (32). [Pg.78]

Electrodialysis. Electro dialytic membrane process technology is used extensively in Japan to produce granulated—evaporated salt. Filtered seawater is concentrated by membrane electro dialysis and evaporated in multiple-effect evaporators. Seawater can be concentrated to a product brine concentration of 200 g/L at a power consumption of 150 kWh/1 of NaCl (8). Improvements in membrane technology have reduced the power consumption and energy costs so that a high value-added product such as table salt can be produced economically by electro dialysis. However, industrial-grade salt produced in this manner caimot compete economically with the large quantities of low cost solar salt imported into Japan from Austraha and Mexico. [Pg.183]

The individual membrane filtration processes are defined chiefly by pore size although there is some overlap. The smallest membrane pore size is used in reverse osmosis (0.0005—0.002 microns), followed by nanofiltration (0.001—0.01 microns), ultrafHtration (0.002—0.1 microns), and microfiltration (0.1—1.0 microns). Electro dialysis uses electric current to transport ionic species across a membrane. Micro- and ultrafHtration rely on pore size for material separation, reverse osmosis on pore size and diffusion, and electro dialysis on diffusion. Separation efficiency does not reach 100% for any of these membrane processes. For example, when used to desalinate—soften water for industrial processes, the concentrated salt stream (reject) from reverse osmosis can be 20% of the total flow. These concentrated, yet stiH dilute streams, may require additional treatment or special disposal methods. [Pg.163]

Electrodialysis. In electro dialysis (ED), the saline solution is placed between two membranes, one permeable to cations only and the other to anions only. A direct electrical current is passed across this system by means of two electrodes, causiag the cations ia the saline solution to move toward the cathode, and the anions to the anode. As shown ia Figure 15, the anions can only leave one compartment ia their travel to the anode, because a membrane separating them from the anode is permeable to them. Cations are both excluded from one compartment and concentrated ia the compartment toward the cathode. This reduces the salt concentration ia some compartments, and iacreases it ia others. Tens to hundreds of such compartments are stacked together ia practical ED plants, lea ding to the creation of alternating compartments of fresh and salt-concentrated water. ED is a continuous-flow process, where saline feed is continuously fed iato all compartments and the product water and concentrated brine flow out of alternate compartments. [Pg.251]

Since membrane fording could quickly render the system inefficient, very careful and thorough feedwater pretreatment similar to that described in the section on RO, is required. Some pretreatment needs, and operational problems of scaling are diminished in the electro dialysis reversal (EDR) process, in which the electric current flow direction is periodically (eg, 3—4 times/h) reversed, with simultaneous switching of the water-flow connections. This also reverses the salt concentration buildup at the membrane and electrode surfaces, and prevents concentrations that cause the precipitation of salts and scale deposition. A schematic and photograph of a typical ED plant ate shown in Eigure 16. [Pg.252]

The voltage used for electro dialysis is about 1 V per membrane pair, and the current flux is of the order of 100 A/m of membrane surface. The total power requirement increases with the feedwater salt concentration, amounting to about 10 MW per m product water per 1000 ppm reduction in salinity. About half this power is required for separation and half for pumping. Many plant flow arrangements exist, and their description can be found, along with other details about the process, in References 68 and 69. Many ED plants, as large as 15,000 vsf jd, are in operation, reducing brackish water concentration typically by a factor of 3—4. [Pg.253]

Electrodialysis. Electro dialysis processes transfer ions of dissolved salts across membranes, leaving purified water behind. Ion movement is induced by direct current electrical fields. A negative electrode (cathode) attracts cations, and a positive electrode (anode) attracts anions. Systems are compartmentalized in stacks by alternating cation and anion transfer membranes. Alternating compartments carry concentrated brine and purified permeate. Typically, 40—60% of dissolved ions are removed or rejected. Further improvement in water quaUty is obtained by staging (operation of stacks in series). ED processes do not remove particulate contaminants or weakly ionized contaminants, such as siUca. [Pg.262]

Electrodialysis Reversal. Electro dialysis reversal processes operate on the same principles as ED however, EDR operation reverses system polarity (typically three to four times per hour). This reversal stops the buildup of concentrated solutions on the membrane and thereby reduces the accumulation of inorganic and organic deposition on the membrane surface. EDR systems are similar to ED systems, designed with adequate chamber area to collect both product water and brine. EDR produces water of the same purity as ED. [Pg.262]

Fig. 1. General dialysis is a process by which dissolved solutes move through a membrane in response to a difference in concentration and in the absence of differences in pressure, temperature, and electrical potential. The rate of mass transport or solute flux, ( ), is directly proportional to the difference in concentration at the membrane surfaces (eq. 1). Boundary layer effects, the difference between local and wall concentrations, are important in most... Fig. 1. General dialysis is a process by which dissolved solutes move through a membrane in response to a difference in concentration and in the absence of differences in pressure, temperature, and electrical potential. The rate of mass transport or solute flux, ( ), is directly proportional to the difference in concentration at the membrane surfaces (eq. 1). Boundary layer effects, the difference between local and wall concentrations, are important in most...
Until the early 1960s, laboratory iavestigators rehed on dialysis for the separation, concentration, and purification of a wide variety of biologic fluids. Examples iaclude removal of a buffer from a proteia solution or concentrating a polypeptide with hyperosmotic dialysate. Speciali2ed fixtures were sometimes employed alternatively, dialysis tubes, ie, cylinders of membrane about the si2e of a test tube and sealed at both ends, were simply suspended ia a dialysate bath. In recent years, dialysis as a laboratory operation has been replaced largely by ultrafiltration and diafiltration. [Pg.33]


See other pages where Concentration dialysis is mentioned: [Pg.31]    [Pg.30]    [Pg.298]    [Pg.77]    [Pg.326]    [Pg.31]    [Pg.30]    [Pg.298]    [Pg.77]    [Pg.326]    [Pg.206]    [Pg.771]    [Pg.346]    [Pg.150]    [Pg.514]    [Pg.61]    [Pg.75]    [Pg.81]    [Pg.82]    [Pg.82]    [Pg.302]    [Pg.67]    [Pg.490]    [Pg.490]    [Pg.237]    [Pg.252]    [Pg.494]    [Pg.31]    [Pg.33]    [Pg.154]    [Pg.175]    [Pg.175]    [Pg.606]    [Pg.2033]    [Pg.2033]   
See also in sourсe #XX -- [ Pg.13 ]




SEARCH



Dialysis

© 2024 chempedia.info