Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Compounding process conditions

As mentioned previously, this section will concentrate on compounding SPS with a co-rotating intermeshing twin-screw extruder. Many of the concepts discussed here are applicable and easily transferable to any style of compounding extruder that might be used to compound SPS formulations. [Pg.296]

1 Feeder Operation It is common to sequence the addition of SPS ingredients to the compounding extruder. The pellets, crumb, oil, and powders are added at the feed funnel of the extruder. Glass fiber and fibrous fillers are fed through the side of the extruder barrel at the point the resin is melted and well mixed with the other ingredients that were introduced at the feed funnel. This is done to avoid excessive attrition of the fibrous additives. The amount of material that can be added to the extruder is dependent on the torque capabilities of the extruder. [Pg.296]

It is likely that when powders are added to the compounding extruder, dust control will be an issue, and a dry vent system will be necessary. There is a tendency for the extruder to overload or lock up if the ratio of powder to resin [Pg.296]

A signal that the amount of vacuum is appropriate is if the cut surface of the pellet appears dense and not foamy. In some cases, the ignition resistant additives may cause the pellets to appear foamy regardless of the level of vacuum. Too much vacuum can cause small pieces of melt, oils, and/or wax to be removed from the melt and condensed in the vacuum line. [Pg.297]

Proper venting for any open sections of the barrel and at the die is recommended. [Pg.297]


In order to correctly approach this research it is necessary to focus (i) the chemical processes which occur during the preparation of a material and that influence their composition (synthesis route, nature of the precursor compounds, processing conditions) (ii) the necessary conditions to produce homogeneous or controlled heterogeneous materials with predictable and reproducible functional properties. [Pg.176]

Nuclear Applications. Powder metallurgy is used in the fabrication of fuel elements as well as control, shielding, moderator, and other components of nuclear-power reactors (63) (see Nuclearreactors). The materials for fuel, moderator, and control parts of a reactor are thermodynamically unstable if heated to melting temperatures. These same materials are stable under P/M process conditions. It is possible, for example, to incorporate uranium or ceramic compounds in a metallic matrix, or to produce parts that are similar in the size and shape desired without effecting drastic changes in either the stmcture or surface conditions. OnlyHttle post-sintering treatment is necessary. [Pg.192]

Thermosetting-encapsulation compounds, based on epoxy resins (qv) or, in some niche appHcations, organosiHcon polymers, are widely used to encase electronic devices. Polyurethanes, polyimides, and polyesters are used to encase modules and hybrids intended for use under low temperature, low humidity conditions. Modified polyimides have the advantages of thermal and moisture stabiHty, low coefficients of thermal expansion, and high material purity. Thermoplastics are rarely used for PEMs, because they are low in purity, requHe unacceptably high temperature and pressure processing conditions. [Pg.530]

Direct Chlorination of Ethylene. Direct chlorination of ethylene is generally conducted in Hquid EDC in a bubble column reactor. Ethylene and chlorine dissolve in the Hquid phase and combine in a homogeneous catalytic reaction to form EDC. Under typical process conditions, the reaction rate is controlled by mass transfer, with absorption of ethylene as the limiting factor (77). Ferric chloride is a highly selective and efficient catalyst for this reaction, and is widely used commercially (78). Ferric chloride and sodium chloride [7647-14-5] mixtures have also been utilized for the catalyst (79), as have tetrachloroferrate compounds, eg, ammonium tetrachloroferrate [24411-12-9] NH FeCl (80). The reaction most likely proceeds through an electrophilic addition mechanism, in which the catalyst first polarizes chlorine, as shown in equation 5. The polarized chlorine molecule then acts as an electrophilic reagent to attack the double bond of ethylene, thereby faciHtating chlorine addition (eq. 6) ... [Pg.417]

Important flammability characteristics are the lower and upper flammability limits, the flash point, the minimum ignition energy, the minimum oxygen concentration, and the autoignition temperature. Values of some of these properties are published for many compounds (NFPA, 1994). These numbers have typically been developed under standardized test conditions. Process conditions may influence their values. [Pg.58]

The most commonly used stabilizers are barium, cadmium, zinc, calcium and cobalt salts of stearic acid phosphorous acid esters epoxy compounds and phenol derivatives. Using stabilizers can improve the heat and UV light resistance of the polymer blends, but these are only two aspects. The processing temperature, time, and the blending equipment also have effects on the stability of the products. The same raw materials and compositions with different blending methods resulted in products with different heat stabilities. Therefore, a thorough search for the optimal processing conditions must be done in conjunction with a search for the best composition to get the best results. [Pg.140]

Therefore, if processability is to be measured on a regular basis, it would be extremely useful if a piece of equipment was available that could measure the dynamic properties under realistic operating conditions. Fortunately, one piece of test equipment has been developed, which is commercially available, the RPA 2000 (Monsanto Co.), which may meet the requirements. A considerable number of investigations have been reported on the RPA 2000 [2J, that support the view that it may meet the requirements of an instrument that measures both polymer and compound processability. The work to date identifies differences in polymers and compounds. However, it is important to relate those differences to processing characteristics in the manufacturing environment. [Pg.452]

Products from coking processes vary considerably with feed type and process conditions. These products are hydrocarbon gases, cracked naphtha, middle distillates, and coke. The gas and liquid products are characterized by a high percentage of unsaturation. Hydrotreatment is usually required to saturate olefinic compounds and to desulfurize products from coking units. [Pg.55]

The various olefinsulfonates used in this study differed in their alkyl chain lengths and in the position of the ionic head group along the hydrophobe moiety. Furthermore, the composition of some IOS compounds was modulated by using different process conditions. [Pg.414]

Continuous and detailed knowledge of process conditions is necessary for the control and optimization of bioprocessing operations. Because of containment and contamination problems, this knowledge must often be obtained without sampling the process stream. At present, conditions such as temperatme, pressure, and acidity (pH) can be measured rapidly and accurately. It is more difficult to monitor the concentrations of the chemical species in the reaction medium, to say nothing of monitoring the cell density and intracellular concentrations of hundreds of compounds. [Pg.42]

In Tobacco. At the time of harvesting, fresh tobacco leaves do not contain measurable amounts of nitrosamines (<5 ppb). However, these compounds are formed during curing, aging and fermentation. Their concentrations depend primarily on the content of proteins, alkaloids, agricultural chemicals and nitrate in the tobacco, as well as on the processing conditions which lead to the reduction of the nitrates. [Pg.249]

Battelle has developed an efficient process for the thermo-catalytic conversion of succinate into pyrrolidones, especially N-methyl-2-pyrrolidone. The process uses both novel Rh based catalysts and novel aqueous process conditions and results in high selectivities and yields of pyrrolidone compounds. The process also includes novel methodology for enhancing yields by recycling and converting non-useful side products of the catalysis into additional pyrrolidone. The process has been demonstrated in both batch and continuous reactors. Additionally, stability of the unique Rh-based catalyst has been demonstrated. [Pg.145]

The Ni/Re on carbon catalyst was also evaluated in a 1700 hour continuous reactor test to determine the stability of the catalyst. This test was performed with a different model compound than xylitol. Shown in Figure 5, the results from the lifetime test of the Ni/Re catalyst operated at constant process conditions sampled intermittently for 1700 hours. This shows that for a similar aqueous hydrogenation reaction deliberately operated to near completion, the catalyst retained its activity and product selectivity even in the face of multiple feed and H2 interruptions. We feel that this data readily suggests that the Ni/Re catalyst will retain its activity for xylitol hydrogenolysis. [Pg.172]

These compounds are multifunctional additives. They can act as heat stabilisers, radical traps, decompose hydroperoxides, UV absorbers, etc. (iv) UV absorbers. This is the largest class of UV stabilisers. They work on the same principle as sun-screen lotions they contain chromophores that can absorb light in the 280-400 nm region and release the excess energy as heat and not high-energy radiation. They must be stable under processing conditions and should not react with the polymer nor decompose with UV radiation. [Pg.106]

Fitted to an extruder a gear pump is particularly useful for difficult compounds and process conditions. The compound is softened and plasticised in the extruder and fed into the gear pump under low intake pressure. The gear pump intake pressure regulates the speed of the extruder so that the gear pump is always filled. The gear pump builds up the pressure required at the die. A screen can be fitted if desired. [Pg.181]


See other pages where Compounding process conditions is mentioned: [Pg.296]    [Pg.296]    [Pg.454]    [Pg.547]    [Pg.549]    [Pg.152]    [Pg.449]    [Pg.313]    [Pg.173]    [Pg.360]    [Pg.167]    [Pg.327]    [Pg.348]    [Pg.816]    [Pg.120]    [Pg.9]    [Pg.307]    [Pg.297]    [Pg.8]    [Pg.13]    [Pg.466]    [Pg.880]    [Pg.152]    [Pg.17]    [Pg.69]    [Pg.3]    [Pg.953]    [Pg.743]    [Pg.101]    [Pg.180]    [Pg.281]    [Pg.306]    [Pg.347]    [Pg.233]    [Pg.259]    [Pg.263]   
See also in sourсe #XX -- [ Pg.296 , Pg.297 ]




SEARCH



Compound processing

Compounding conditions

Compounding process

Process conditions

Processing conditions

© 2024 chempedia.info