Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrophobic moieties

Figure 1 Schematic structures of micelle and liposome, their formation and loading with a contrast agent, (a) A micelle is formed spontaneously in aqueous media from an amphiphilic compound (1) that consists of distinct hydrophilic (2) and hydrophobic (3) moieties. Hydrophobic moieties form the micelle core (4). Contrast agent (asterisk gamma- or MR-active metal-loaded chelating group, or heavy element, such as iodine or bromine) can be directly coupled to the hydrophobic moiety within the micelle core (5), or incorporated into the micelle as an individual monomeric (6) or polymeric (7) amphiphilic unit, (b) A liposome can be prepared from individual phospholipid molecules (1) that consists of a bilayered membrane (2) and internal aqueous compartment (3). Contrast agent (asterisk) can be entrapped in the inner water space of the liposome as a soluble entity (4) or incorporated into the liposome membrane as a part of monomeric (5) or polymeric (6) amphiphilic unit (similar to that in case of micelle). Additionally, liposomes can be sterically protected by amphiphilic derivatization with PEG or PEG-like polymer (7) [1]. Figure 1 Schematic structures of micelle and liposome, their formation and loading with a contrast agent, (a) A micelle is formed spontaneously in aqueous media from an amphiphilic compound (1) that consists of distinct hydrophilic (2) and hydrophobic (3) moieties. Hydrophobic moieties form the micelle core (4). Contrast agent (asterisk gamma- or MR-active metal-loaded chelating group, or heavy element, such as iodine or bromine) can be directly coupled to the hydrophobic moiety within the micelle core (5), or incorporated into the micelle as an individual monomeric (6) or polymeric (7) amphiphilic unit, (b) A liposome can be prepared from individual phospholipid molecules (1) that consists of a bilayered membrane (2) and internal aqueous compartment (3). Contrast agent (asterisk) can be entrapped in the inner water space of the liposome as a soluble entity (4) or incorporated into the liposome membrane as a part of monomeric (5) or polymeric (6) amphiphilic unit (similar to that in case of micelle). Additionally, liposomes can be sterically protected by amphiphilic derivatization with PEG or PEG-like polymer (7) [1].
Organochlorines Aromatic Aliphatic 105-103 Few polar moieties hydrophobic and Van der Wasls interaction induction effects substituents, non-conjug. double-bonds)... [Pg.19]

The phenomenon of hydrophobic association on raising the temperature, as noted above and treated in detail in Chapter 5, derives from the thermodynamics of structured water surrounding hydrophobic moieties. Hydrophobic hydration disappears, due to an unfavorable Gibbs free energy for solubility, as the temperature is raised from below to above the transition temperature that reaehes the cusp of insolubility represented in Figure 7.1. This causes the hydrophobic domains to separate from water by means of intra- and intermolecular hydrophobic association. [Pg.246]

Membranes used in medicine are but inert permselective barriers. The presence of charged moieties, hydrophobic domains, hydrogen bonds, or specific ligands make them interact with dissolved species in the membrane-contacting fluids and may cause their adsorption on the membrane surface. [Pg.499]

The rate of the Lewis-acid catalysed Diels-Alder reaction in water has been compared to that in other solvents. The results demonstrate that the expected beneficial effect of water on the Lewis-acid catalysed reaction is indeed present. However, the water-induced acceleration of the Lewis-add catalysed reaction is not as pronounced as the corresponding effect on the uncatalysed reaction. The two effects that underlie the beneficial influence of water on the uncatalysed Diels-Alder reaction, enforced hydrophobic interactions and enhanced hydrogen bonding of water to the carbonyl moiety of 1 in the activated complex, are likely to be diminished in the Lewis-acid catalysed process. Upon coordination of the Lewis-acid catalyst to the carbonyl group of the dienophile, the catalyst takes over from the hydrogen bonds an important part of the activating influence. Also the influence of enforced hydrophobic interactions is expected to be significantly reduced in the Lewis-acid catalysed Diels-Alder reaction. Obviously, the presence of the hydrophilic Lewis-acid diminished the nonpolar character of 1 in the initial state. [Pg.174]

The stmcture of individual block polymers is deterrnined by the nature of the initiator (1,2-propanediol above), the sequence of addition of propylene and ethylene oxides, and the percentage of propylene and ethylene oxides in the surfactant. Thus, when the order of addition is reversed, a different stmcture is obtained in which the hydrophobic moieties are on the outside of the molecule. With ethylene glycol as the initiator, the reactions are as foUows ... [Pg.254]

In fine wool such as that obtained from merino sheep, the cuticle is normally one cell thick (20 x 30 x 0.5 mm, approximate dimensions) and usually constitutes about 10% by weight of the total fiber. Sections of cuticle cells show an internal series of laminations (Figs. 1 and 2) comprising outer sulfur-rich bands known as the exocuticle and inner regions of lower sulfur content called the endocuticle (13). On the exposed surface of cuticle cells, a membrane-like proteinaceous band (epicuticle) and a unique hpid component form a hydrophobic resistant barrier (14). These hpid and protein components are the functional moieties of the fiber surface and are important in fiber protection and textile processing (15). [Pg.340]

The partition coefficient P, defined as the equilibrium concentration of the compound in n-octanol divided by that in the aqueous phase, has been measured for pyrazole and indazole (B-79MI40416). It was found that log F = 0.13-0.26 for pyrazole and 1.82 for indazole, clearly showing the greater hydrophobicity (lipophilicity) of the indazole ring, due to the benzenoid moiety. [Pg.207]

The binding site is located at the tip of the subunit within the jelly roll structure (Figure 5.23). The sialic acid moiety of the hemagglutinin inhibitors binds in the center of a broad pocket on the surface of the barrel (Figure 5.24). In addition to this groove there is a hydrophobic channel that can accomodate large hydrophobic substituents at the C2 position of sialic acid (Figures 5.22 and 5.24). [Pg.80]

Figure 5.24 Space-filling model (green) of the sialic acid binding domain of hemagglutinin with a bound inhibitor (red) Illustrating the different binding grooves. The sialic acid moiety of the Inhibitor binds in the central groove. A large hydrophobic substituent, Ri, at the Cz position of sialic acid binds in a hydrophobic channel that runs from the central groove to the bottom of the domain. (Adapted from S.J. Watowich et al.. Structure 2 719-731, 1994.)... Figure 5.24 Space-filling model (green) of the sialic acid binding domain of hemagglutinin with a bound inhibitor (red) Illustrating the different binding grooves. The sialic acid moiety of the Inhibitor binds in the central groove. A large hydrophobic substituent, Ri, at the Cz position of sialic acid binds in a hydrophobic channel that runs from the central groove to the bottom of the domain. (Adapted from S.J. Watowich et al.. Structure 2 719-731, 1994.)...
Alhedai et al also examined the exclusion properties of a reversed phase material The stationary phase chosen was a Cg hydrocarbon bonded to the silica, and the mobile phase chosen was 2-octane. As the solutes, solvent and stationary phase were all dispersive (hydrophobic in character) and both the stationary phase and the mobile phase contained Cg interacting moieties, the solute would experience the same interactions in both phases. Thus, any differential retention would be solely due to exclusion and not due to molecular interactions. This could be confirmed by carrying out the experiments at two different temperatures. If any interactive mechanism was present that caused retention, then different retention volumes would be obtained for the same solute at different temperatures. Solutes ranging from n-hexane to n hexatriacontane were chromatographed at 30°C and 50°C respectively. The results obtained are shown in Figure 8. [Pg.42]

Why should the cores of most globular and membrane proteins consist almost entirely of a-helices and /3-sheets The reason is that the highly polar N—H and C=0 moieties of the peptide backbone must be neutralized in the hydrophobic core of the protein. The extensively H-bonded nature of a-helices and /3-sheets is ideal for this purpose, and these structures effectively stabilize the polar groups of the peptide backbone in the protein core. [Pg.181]

Because skin exhibits many of the properties of a lipid membrane, dermal penetration can often be enhanced by increasing a molecule s lipophilicity. Preparation of an ester of an alcohol is often used for this purpose since this stratagem simultaneously time covers a hydrophilic group and provides a hydrophobic moiety the ready cleavage of this function by the ubiquitous esterase enzymes assures availability of the parent drug molecule. Thus acylation of the primary alcohol in flucinolone (65) with propionyl chloride affords procinonide (66) the same transform... [Pg.94]

Molecules consisting of polar and apolar moieties behave as amphiphiles they are simultaneously hydro- and lipophilic or hydrophilic and hydrophobic. Due to this... [Pg.6]

These contrasting results for partial azinomycin structures are confusing, but may be due to subtle differences in experimental design. However, the results of Coleman et al. on azinomycin B itself provide considerable evidence that its binding to DNA does not involve intercalation, and that the naphthoate moiety is involved in more general hydrophobic interactions. [Pg.422]

Despite the fact that the Phen moieties are tightly incorporated in the compartment of the hydrophobic microdomain, the fluorescence from the Phen residues in poly(A/St/Phen) is very efficiently quenched by MV2+ in aqueous solution. The quenching efficiency is much higher than the APh-2 (8 with x = 2)... [Pg.84]

The time profiles of the absorbance due to MV+ at 600 nm are illustrated in Figures 18. Note that they depend on the MV2+ concentration. The curves for the poly(A/St/Phen)-MV2+ systems are biphasic and can be explained in terms of a simple mechanism illustrated in Scheme 2. Here, D A, A represents a compartmentalized Phen moiety (D) and MV2+ dications (A) bound to the hydrophobic microdomain. [Pg.86]

It has been shown in Chapter 5, the fluorescence quenching of the DPA moiety by MV2 + is very efficient in an alkaline solution [60]. On the other hand, Delaire et al. [124] showed that the quenching in an acidic solution (pH 1.5-3.0) was less effective (kq = 2.5 x 109 M 1 s 1) i.e., it was slower than the diffusion-controlled limit. They interpreted this finding as due to the reduced accessibility of the quencher to the DPA group located in the hydrophobic domain of protonated PMA at acidic pH. An important observation is that, in a basic medium, laser excitation of the PMAvDPA-MV2 + system yielded no transient absorption. This implies that a rapid back ET occurs after very efficient fluorescence quenching. [Pg.90]

Since the dyes contain hydrophobic moieties, the fading reactions, which should be decelerated by polyelectrolytes according to the electrostatic model, can even be accelerated by hydrophobic polyelectrolytes. As shown in Fig. 17, the addition of... [Pg.175]


See other pages where Hydrophobic moieties is mentioned: [Pg.289]    [Pg.446]    [Pg.1638]    [Pg.289]    [Pg.446]    [Pg.1638]    [Pg.2419]    [Pg.43]    [Pg.169]    [Pg.63]    [Pg.64]    [Pg.65]    [Pg.444]    [Pg.463]    [Pg.255]    [Pg.257]    [Pg.272]    [Pg.276]    [Pg.266]    [Pg.479]    [Pg.260]    [Pg.723]    [Pg.517]    [Pg.26]    [Pg.59]    [Pg.68]    [Pg.76]    [Pg.118]    [Pg.74]    [Pg.76]    [Pg.85]    [Pg.158]    [Pg.69]    [Pg.922]   
See also in sourсe #XX -- [ Pg.107 ]




SEARCH



Antigens hydrophobic moiety

© 2024 chempedia.info