Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Composite membranes porous film

The cost of Pd-alloy membranes used for hydrogen separation may be reduced by depositing a thin Pd-alloy film on a suitable porous substrate to form a composite membrane. Almost all of the Pd-alloy membrane development efforts are, thus, focused on preparing thin yet defect-free Pd-alloy composite membranes (e.g., Hopkins, 2007 Coulter, 2007 Delft et al., 2005 Damle et al., 2005 Mardilovich et al., 2002). A detailed review of the Pd-alloy membrane research has been prepared by Paglieri and Way (2002) with an extensive bibliography of the palladium membrane research to date. An updated review has been recently prepared by Collot (2003) and Paglieri (2006). [Pg.302]

The membranes used for pervaporation are similar to reverse osmosis membranes, i.e. both are composite membranes consisting of a very thin dense permselective film on top of a nonselective porous support. In pervaporation, however, the membrane is highly swollen at the feed side and relatively dry at the permeate side. Two different types of pervaporation membranes based on polymeric materials were developed at about the same time in the early 1980s [31] ... [Pg.531]

The structure of the so-called "composite" membranes used in reverse osmosis is also much more complex than the conventional, simplistic description of the ultrathin semipermeable film deposited on and supported by a porous substrate. Most of these membranes which exhibit high flux and separation are composed of an anisotropic, porous substrate topped by an anisotropic, ultrathin permselective dense layer which is either highly crosslinked, or exhibits a progressively decreased hydrophilicity toward the surface. The basic difference between the conventional anisotropic (asymmetric) membrane and the thin film composite is that the latter might be... [Pg.268]

PA-300, NS-lOO, which are crossllnked polyamide derivatives -ultrathln film depositions on porous polysulfone supports) are accurately represented by this scheme. In comparing the Loeb-Sourirajan type of membrane to the composite membrane, one may be puzzled by the function of the gel layer shown in the scheme. [Pg.286]

Most commercially available RO membranes fall into one of two categories asymmetric membranes containing one polymer, or thin-film composite membranes consisting of two or more polymer layers. Asymmetric RO membranes have a thin ( 100 nm) permselective skin layer supported on a more porous sublayer of the same polymer. The dense skin layer determines the fluxes and selectivities of these membranes whereas the porous sublayer serves only as a mechanical support for the skin layer and has little effect on the membrane separation properties. Asymmetric membranes are most commonly formed by a phase inversion (polymer precipitation) process (16). In this process, a polymer solution is precipitated into a polymer-rich solid phase that forms the membrane and a polymer-poor liquid phase that forms the membrane pores or void spaces. [Pg.144]

An excellent review of composite RO and nanofiltration (NF) membranes is available (8). These thin-film, composite membranes consist of a thin polymer barrier layer formed on one or more porous support layers, which is almost always a different polymer from the surface layer. The surface layer determines the flux and separation characteristics of the membrane. The porous backing serves only as a support for the barrier layer and so has almost no effect on membrane transport properties. The barrier layer is extremely thin, thus allowing high water fluxes. The most important thin-film composite membranes are made by interfacial polymerization, a process in which a highly porous membrane, usually polysulfone, is coated with an aqueous solution of a polymer or monomer and then reacts with a cross-linking agent in a water-immiscible solvent. [Pg.144]

The poly(ether/amide) thin film composite membrane (PA-100) was developed by Riley et al., and is similar to the NS-101 membranes in structure and fabrication method 101 102). The membrane was prepared by depositing a thin layer of an aqueous solution of the adduct of polyepichlorohydrin with ethylenediamine, in place of an aqueous polyethyleneimine solution on the finely porous surface of a polysulfone support membrane and subsequently contacting the poly(ether/amide) layer with a water immiscible solution of isophthaloyl chloride. Water fluxes of 1400 16001/m2 xday and salt rejection greater than 98% have been attained with a 0.5% sodium chloride feed at an applied pressure of 28 kg/cm2. Limitations of this membrane include its poor chemical stability, temperature limitations, and associated flux decline due to compaction. [Pg.87]

A few studies have reported the embedding of an MIP film between two membranes as a strategy for the construction of composite membranes. For example, a metal ion-selective membrane composed of a Zn(II)-imprinted film between two layers of a porous support material was reported [253]. The imprinted membrane was prepared by surface water-in-oil emulsion polymerisation of divinylbenzene as polymer matrix with 1,12-dodecanediol-0,0 -diphenylphosphonic acid as functional host molecule for Zn(II) binding in the presence of acrylonitrile-butadiene rubber as reinforcing material and L-glutamic acid dioleylester ribitol as emulsion stabiliser. By using the acrylonitrile-butadiene rubber in the polymer matrix and the porous support PTFE, an improvement of the flexibility and the mechanical strength has been obtained for this membrane. [Pg.74]

Cross-section structure. An anisotropic membrane (also called asymmetric ) has a thin porous or nonporous selective barrier, supported mechanically by a much thicker porous substructure. This type of morphology reduces the effective thickness of the selective barrier, and the permeate flux can be enhanced without changes in selectivity. Isotropic ( symmetric ) membrane cross-sections can be found for self-supported nonporous membranes (mainly ion-exchange) and macroporous microfiltration (MF) membranes (also often used in membrane contactors [1]). The only example for an established isotropic porous membrane for molecular separations is the case of track-etched polymer films with pore diameters down to about 10 run. All the above-mentioned membranes can in principle be made from one material. In contrast to such an integrally anisotropic membrane (homogeneous with respect to composition), a thin-film composite (TFC) membrane consists of different materials for the thin selective barrier layer and the support structure. In composite membranes in general, a combination of two (or more) materials with different characteristics is used with the aim to achieve synergetic properties. Other examples besides thin-film are pore-filled or pore surface-coated composite membranes or mixed-matrix membranes [3]. [Pg.21]

Salts rejected by the membrane stay in the concentrating stream but are continuously disposed from the membrane module by fresh feed to maintain the separation. Continuous removal of the permeate product enables the production of freshwater. RO membrane-building materials are usually polymers, such as cellulose acetates, polyamides or polyimides. The membranes are semipermeable, made of thin 30-200 nanometer thick layers adhering to a thicker porous support layer. Several types exist, such as symmetric, asymmetric, and thin-film composite membranes, depending on the membrane structure. They are usually built as envelopes made of pairs of long sheets separated by spacers, and are spirally wound around the product tube. In some cases, tubular, capillary, and even hollow-fiber membranes are used. [Pg.222]

Membranes can be classified as porous and nonporous based on the structure or as flat sheet and hollow fiber based on the geometry. Membranes used in pervaporation and gas permeation are typically hydrophobic, nonporous silicone (polydimethylsiloxane or PDMS) membranes. Organic compounds in water dissolve into the membrane and get extracted, while the aqueous matrix passes unextracted. The use of mircoporous membrane (made of polypropylene, cellulose, or Teflon) in pervaporation has also been reported, but this membrane allows the passage of large quantities of water. Usually, water has to be removed before it enters the analytical instrument, except when it is used as a chemical ionization reagent gas in MS [50], It has been reported that permeation is faster across a composite membrane, which has a thin (e.g., 1 pm) siloxane film deposited on a layer of microporous polypropylene [61],... [Pg.215]

It is evident that the ceramic membrane, which is represented in the XRD pattern (see Figure 10.6) by the amorphous component of the XRD profile, was covered by the AlP04-5 molecular sieve, since the crystalline component of the obtained XRD pattern fairly well coincides with the standards reported in the literature [107]. Consequently, the porous support was successfully coated with a zeolite layer, which was shaped by the hydrothermal process as previously described. Thus, a composite membrane, that is, an AlP04-5 molecular sieve thin film zeolite-based ceramic, was produced. [Pg.482]

Figure 34.13 Reverse osmosis characteristics of composite membranes prepared by plasma polymerization of benzene/H20/N2 compared with those from acetylene/H20/ N2 represented by the solid line porous polysulfone film as the substrate, 3.5% NaCl at 1500 psi. Figure 34.13 Reverse osmosis characteristics of composite membranes prepared by plasma polymerization of benzene/H20/N2 compared with those from acetylene/H20/ N2 represented by the solid line porous polysulfone film as the substrate, 3.5% NaCl at 1500 psi.
The methods for preparation of nonporous composite membrane catalyst are discussed in Ref. 10. The porous stainless steel sheets were covered with a dense palladium alloy film by magnetron sputtering [113] or by corolling of palladium alloy foil and porous steel sheet. The electroless plating of palladium or palladium alloy on stainless steel [114] or on porous alumina ceramic [115,116] gives the composite membranes with an ultrathin, dense palladium top layer. [Pg.450]

The main advantages of reactors with composite membrane catalysts arc the higher hydrogen permeability and smaller amount of precious metals in comparison with those presented in Section II. All constructions of the reactors with plane membrane catalyst may be used for composites of thin palladium alloy film and porous metal sheet The design of reactors with composite membranes on polymeric support may be the same as for diffusion apparatus with polymeric membranes (see, for example. Ref. 138). A very promising support for the composite membrane catalysts is hollow carbon fiber [139], once properly thermostable adhesives are found. [Pg.452]


See other pages where Composite membranes porous film is mentioned: [Pg.302]    [Pg.353]    [Pg.358]    [Pg.47]    [Pg.303]    [Pg.312]    [Pg.439]    [Pg.286]    [Pg.305]    [Pg.306]    [Pg.307]    [Pg.307]    [Pg.309]    [Pg.35]    [Pg.74]    [Pg.17]    [Pg.118]    [Pg.134]    [Pg.468]    [Pg.96]    [Pg.526]    [Pg.96]    [Pg.276]    [Pg.746]    [Pg.752]    [Pg.753]    [Pg.765]    [Pg.766]    [Pg.25]    [Pg.96]    [Pg.454]    [Pg.34]    [Pg.118]    [Pg.118]    [Pg.17]   
See also in sourсe #XX -- [ Pg.252 , Pg.268 , Pg.269 ]




SEARCH



Film membrane

Membrane composite

Membrane porous

Membranes composition

Porous film

© 2024 chempedia.info