Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solid-liquid samples

The characterization of water-soluble components in slurries is one use of SPME with mixed solid-liquid samples. In one application, dried homogenized solid samples (10 mg of sewage sludge or sediment) were slurried in 4 ml of H,0 saturated with NaCl and adjusted to pH 2 with HCl for extraction for 1-15 h, which was followed by desorption into 4 1 methanol/ethanol over 2 min. The extracted compounds were either injected into a liquid chromatograph or fed directly via an electrospray ionization interface to a mass spectrometer with 1 s miz scans from 50-700 or selected-ion monitoring. The major components extracted included phthalates, fatty acids, non-ionic surfactants, chlorinated phenols and carbohydrate derivatives [235]. [Pg.173]

Elemental analyses, detectability to tOppm, Z>11, solid/liquid samples... [Pg.370]

Chapter 13 covers sampling of liquids and solids. Liquid sampling by solution, capillary film, sealed cells, and internal reflection are considered. Solid sampling by... [Pg.586]

Accurate enthalpies of solid-solid transitions and solid-liquid transitions (fiision) are usually detennined in an adiabatic heat capacity calorimeter. Measurements of lower precision can be made with a differential scaiming calorimeter (see later). Enthalpies of vaporization are usually detennined by the measurement of the amount of energy required to vaporize a known mass of sample. The various measurement methods have been critically reviewed by Majer and Svoboda [9]. The actual teclmique used depends on the vapour pressure of the material. Methods based on... [Pg.1910]

IR spectra can be recorded on a sample regardless of its physical state—solid liquid gas or dissolved m some solvent The spectrum m Eigure 13 31 was taken on the neat sample meaning the pure liquid A drop or two of hexane was placed between two sodium chloride disks through which the IR beam is passed Solids may be dis solved m a suitable solvent such as carbon tetrachloride or chloroform More commonly though a solid sample is mixed with potassium bromide and the mixture pressed into a thin wafer which is placed m the path of the IR beam... [Pg.559]

Although the terms solute and solution are often associated with liquid samples, they can be extended to gas-phase and solid-phase samples as well. The actual units for reporting concentration depend on how the amounts of solute and solution are measured. Table 2.4 lists the most common units of concentration. [Pg.15]

Extraction Between Two Phases When the sample is initially present in one of the phases, the separation is known as an extraction. In a simple extraction the sample is extracted one or more times with portions of the second phase. Simple extractions are particularly useful for separations in which only one component has a favorable distribution ratio. Several important separation techniques are based on simple extractions, including liquid-liquid, liquid-solid, solid-liquid, and gas-solid extractions. [Pg.212]

Solid-Phase Extractions In a solid-phase extraction the sample is passed through a cartridge containing solid particulates that serve as the adsorbent material. For liquid samples the solid adsorbent is isolated in either a disk cartridge or a column (Figure 7.17). The choice of adsorbent is determined by the properties of the species being retained and the matrix in which it is found. Representative solid adsorbents... [Pg.212]

Selected Adsorbents for Solid-Phase Extraction of Liquid Samples... [Pg.213]

A technique for separating volatile analytes from liquid samples in which the analytes are subsequently trapped on a solid adsorbent. [Pg.214]

Infrared spectroscopy is routinely used for the analysis of samples in the gas, liquid, and solid states. Sample cells are made from materials, such as NaCl and KBr, that are transparent to infrared radiation. Gases are analyzed using a cell with a pathlength of approximately 10 cm. Longer pathlengths are obtained by using mirrors to pass the beam of radiation through the sample several times. [Pg.393]

Atomization The most important difference between a spectrophotometer for atomic absorption and one for molecular absorption is the need to convert the analyte into a free atom. The process of converting an analyte in solid, liquid, or solution form to a free gaseous atom is called atomization. In most cases the sample containing the analyte undergoes some form of sample preparation that leaves the analyte in an organic or aqueous solution. For this reason, only the introduction of solution samples is considered in this text. Two general methods of atomization are used flame atomization and electrothermal atomization. A few elements are atomized using other methods. [Pg.412]

Atomization and Excitation Atomic emission requires a means for converting an analyte in solid, liquid, or solution form to a free gaseous atom. The same source of thermal energy usually serves as the excitation source. The most common methods are flames and plasmas, both of which are useful for liquid or solution samples. Solid samples may be analyzed by dissolving in solution and using a flame or plasma atomizer. [Pg.435]

Porro, T. J. Pattacini, S. C. Sample Handling for Mid-Infrared Spectroscopy, Part 1 Solid and Liquid Sampling, Spectroscopy 1993, 8(7), 40-47. [Pg.458]

A liquid sample must be vaporized to a gas or, more likely, to a vapor consisting of an aerosol of gas, small droplets, and even small particles of solid matter. To be examined, the aerosol is mixed with argon gas to make up the needed flow of gas into the plasma and is then swept into the flame. [Pg.397]

Some elements (S, Se, Te, P, As, Sb, Bi, Ge, Sn, Pb) in liquid samples arc conveniently converted into their volatile hydrides before being passed into the plasma, as discussed in Part A (Chapter 15). For some samples, any volatile solvent is first evaporated in a sample holder, which is then heated strongly to vaporize the resulting solid residue, as discussed in Part C (Chapter 17). [Pg.397]

Desorption ionization (DI). General term to encompass the various procedures (e.g., secondary ion mass spectrometry, fast-atom bombardment, californium fission fragment desorption, thermal desorption) in which ions are generated directly from a solid or liquid sample by energy input. Experimental conditions must be clearly stated. [Pg.438]

Figure 8.28 shows how the X-rays fall on the solid or liquid sample which then emits X-ray fluorescence in the region 0.2-20 A. The fluorescence is dispersed by a flat crystal, often of lithium fluoride, which acts as a diffraction grating (rather like the quartz crystal in the X-ray monochromator in Figure 8.3). The fluorescence may be detected by a scintillation counter, a semiconductor detector or a gas flow proportional detector in which the X-rays ionize a gas such as argon and the resulting ions are counted. Figure 8.28 shows how the X-rays fall on the solid or liquid sample which then emits X-ray fluorescence in the region 0.2-20 A. The fluorescence is dispersed by a flat crystal, often of lithium fluoride, which acts as a diffraction grating (rather like the quartz crystal in the X-ray monochromator in Figure 8.3). The fluorescence may be detected by a scintillation counter, a semiconductor detector or a gas flow proportional detector in which the X-rays ionize a gas such as argon and the resulting ions are counted.
The liquid was applied and dried on cellulose filter (diameter 25 mm). In the present work as an analytical signal we took the relative intensity of analytical lines. This approach reduces non-homogeneity and inequality of a probe. Influence of filter type and sample mass on features of the procedure was studied. The dependence of analytical lines intensity from probe mass was linear for most of above listed elements except Ca presented in most types of filter paper. The relative intensities (reduced to one of the analysis element) was constant or dependent from mass was weak in determined limits. This fact allows to exclude mass control in sample pretreatment. For Ca this dependence was non-linear, therefore, it is necessary to correct analytical signal. Analysis of thin layer is characterized by minimal influence of elements hence, the relative intensity explicitly determines the relative concentration. As reference sample we used solid synthetic samples with unlimited lifetime. [Pg.370]

Sample requirements Solids liquids vacuum compatible typically <2.5 cm-diameter, <1.5 cm-thickness... [Pg.25]

Sample requirements Solid, liquid, or gas in all forms vacuum not required... [Pg.32]

Sample requirements Solids, liquids (dispersed or evaporated on a substrate), or powders must be vacuum compatible... [Pg.41]

Raman spectroscopy is a very convenient technique for the identification of crystalline or molecular phases, for obtaining structural information on noncrystalline solids, for identifying molecular species in aqueous solutions, and for characterizing solid—liquid interfaces. Backscattering geometries, especially with microfocus instruments, allow films, coatings, and surfaces to be easily measured. Ambient atmospheres can be used and no special sample preparation is needed. [Pg.440]

Approximately 70 different elements are routinely determined using ICP-OES. Detection limits are typically in the sub-part-per-billion (sub-ppb) to 0.1 part-per-million (ppm) range. ICP-OES is most commonly used for bulk analysis of liquid samples or solids dissolved in liquids. Special sample introduction techniques, such as spark discharge or laser ablation, allow the analysis of surfaces or thin films. Each element emits a characteristic spectrum in the ultraviolet and visible region. The light intensity at one of the characteristic wavelengths is proportional to the concentration of that element in the sample. [Pg.633]


See other pages where Solid-liquid samples is mentioned: [Pg.53]    [Pg.379]    [Pg.67]    [Pg.84]    [Pg.375]    [Pg.648]    [Pg.622]    [Pg.53]    [Pg.379]    [Pg.67]    [Pg.84]    [Pg.375]    [Pg.648]    [Pg.622]    [Pg.1378]    [Pg.1563]    [Pg.1787]    [Pg.213]    [Pg.214]    [Pg.263]    [Pg.263]    [Pg.418]    [Pg.578]    [Pg.777]    [Pg.110]    [Pg.368]    [Pg.252]    [Pg.443]    [Pg.282]    [Pg.622]    [Pg.634]    [Pg.638]   


SEARCH



Drying samples, liquid solid

Liquid samples

Liquid-solid chromatography sample cleanup

Problem samples liquids, slurries and solids

Sample Handling Analysis of Solids, Liquids, and Gases

Sample preparation liquid extraction from solid

Sample preparation liquid-solid

Sample preparation solid-liquid extraction

Sample solid samples

Sampling solids

Solid-liquid mixing measurement, sampling

Solid-phase microextraction from liquid samples

Solid/liquid separation samples

© 2024 chempedia.info