Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Colloidal forces measurements

Drelich J, Long J, Xu Z, Masliyah J, Nalaskowski J, Beauchamp R, Liu Y (2006) AFM colloidal forces measured between microscopic probes and flat substrates in nanoparticle suspensions. J Colloid Interface Sci 301(2) 511-522... [Pg.19]

Craig V S J 1997 An historical review of surface force measurement techniques Colloids Surf. A Physicochem. Eng. Aspects 129-30 75... [Pg.320]

Ducker W A, Senden T J and Pashley R M 1991 Direct measurement of colloidal forces using an atomic force microscope Nature 353 239... [Pg.1724]

Comprehension of the interactions among microstructures composed of tethered chains is central to the understanding of many of their important properties. Their ability to impart stability against flocculation to suspensions of colloidal particles [52, 124, 125] or to induce repulsions that lead to colloidal crystallization [126] are examples of practical properties arising from interactions among tethered chains many more are conceivable but not yet realized, such as effects on adhesion, entanglement or on the assembly of new block copolymer microstructures. We will be rather brief in our treatment of interactions between tethered chains since a comprehensive review has been published recently of direct force measurements on interacting layers of tethered chains [127]. [Pg.59]

Surface forces measurement directly determines interaction forces between two surfaces as a function of the surface separation (D) using a simple spring balance. Instruments employed are a surface forces apparatus (SFA), developed by Israelachivili and Tabor [17], and a colloidal probe atomic force microscope introduced by Ducker et al. [18] (Fig. 1). The former utilizes crossed cylinder geometry, and the latter uses the sphere-plate geometry. For both geometries, the measured force (F) normalized by the mean radius (R) of cylinders or a sphere, F/R, is known to be proportional to the interaction energy, Gf, between flat plates (Derjaguin approximation). [Pg.2]

The process of adsorption of polyelectrolytes on solid surfaces has been intensively studied because of its importance in technology, including steric stabilization of colloid particles [3,4]. This process has attracted increasing attention because of the recently developed, sophisticated use of polyelectrolyte adsorption alternate layer-by-layer adsorption [7] and stabilization of surfactant monolayers at the air-water interface [26], Surface forces measurement has been performed to study the adsorption process of a negatively charged polymer, poly(styrene sulfonate) (PSS), on a cationic monolayer of fluorocarbon ammonium amphiphilic 1 (Fig. 7) [27],... [Pg.7]

Ducker, W. A., T. J. Senden, and R. M. Pashley (1991), "Direct Measurement of Colloidal Forces Using an Atomic Force Microscope", Nature 353, 239-241. [Pg.209]

Balnois E, Papastavrou G, Wilkinson KJ (2007) Force microscopy and force measurements of environmental colloids. In Wilkinson KJ, Lead JR, editors. Environmental Colloids and Particles Behaviour, Structure and Characterization. Chichester Wiley, pp 405 68... [Pg.44]

F. Leal-Calderon, T. Stora, O. Mondain Monval, P. Poulin, and J. Bibette Direct Measurement of Colloidal Forces. Phys. Rev. Lett. 72, 2959 (1994). [Pg.51]

The formation of complexes is not restricted to mixtures of polyectrolytes and surfactants of opposite charge. Neutral polymers and ionic surfactants can also form bulk and/or surface complexes. Philip et al. [74] have studied the colloidal forces in presence of neutral polymer/ionic surfactant mixtures in the case where both species can adsorb at the interface of oil droplets dispersed in an aqueous phase. The molecules used in their studies are a neutral PVA-Vac copolymer (vinyl alcohol [88%] and vinyl acetate [12%]), with average molecular weight M = 155000 g/mol, and ionic surfactants such as SDS. The force measurements were performed using MCT. The force profiles were always roughly linear in semilogarithmic scale and were fitted by a simple exponential function ... [Pg.75]

D.C. Prieve and N.A. Frej Total Internal Reflection Microscopy A Quantitative Tool for the Measurement of Colloidal Forces. Langmuir 6, 396 (1990). [Pg.98]

P. Omarjee Direct Force Measurements Between Polymer Stabilized Colloids. Ph.D thesis, Bordeaux I University (1999). [Pg.99]

In the past decade, much development has taken place in regard to measuring the forces involved in these colloidal systems. In one method, the procedure used is to measure the force present between two solid surfaces at very low distances (less than micrometer). The system can operate under water, and thus the effect of addictives has been investigated. These data have provided verification of many aspects of the DLVO theory. Recently, the atomic force microscope (AFM) has been used to measure these colloidal forces directly (Birdi, 2002). Two particles are brought closer, and the force (nanoNewton) is measured. In fact, commercially available apparatus are designed to perform such analyses. The measurements can be carried out in fluids and under various experimental conditions (such as added electrolytes, pH, etc.). [Pg.154]

AFM has been used to study surface molecules under different conditions. Colloidal system studies by AFM AFM has allowed scientists to be able to study molecular forces between molecules at very small (almost molecular size) distances. Further, it is a very attractive and sensitive tool for such measurements. In a recent study, the colloidal force as a function of pH of Si02 immersed in the aqueous phase was reported using AFM. The force between an Si02 sphere (ca. 5 mm diameter) and a chromium oxide surface in the aqueous phase of sodium phosphate were measured (pH from 3 to 11). The Si02 sphere was attached to the AFM sensor as shown in Figure 10.3. [Pg.216]

In this section, we present a few examples of instruments available for visual observation and imaging of colloids and surfaces, for measurement of sizes and for surface force measurements. Such a presentation can hardly be comprehensive in fact, that is not our purpose here. Throughout the book, we discuss numerous other techniques such as osmotic pressure measurements, light and other radiation scattering techniques, surface tension measurements,... [Pg.38]

The main objective of the present section, however, is to begin with a very standard technique such as optical microscopy and to use it to illustrate why colloids are difficult to see and what modern developments have emerged in recent years to allow us to see and do things that were considered impossible until a decade ago. We also use this opportunity to review briefly some new techniques that are currently available to measure interaction forces between particles directly. We appeal to some of these techniques in other chapters when we discuss colloidal forces. [Pg.39]

Elimelech, M., Gregory, J., Jia, X., and Williams, R., Particle Deposition and Aggregation Measurement, Modelling and Simulation, Butterworth-Heinemann, Oxford, England, 1995. (Graduate and research levels. A state-of-the-art treatment of deposition of colloidal particles and their dependence on colloidal forces. Includes theoretical, computational, and experimental approaches.)... [Pg.620]

The JKR theory predicts correct contact radii for relative soft surfaces with effective radii larger than 100 /an. This was shown in direct force measurements by the surface forces apparatus [217, 218] or specifically designed systems. For smaller spheres it was verified using the colloidal probe technique [219],... [Pg.115]

Wang, A.F., Jiang, L.P., Mao, G.Z. and Liu, Y.H. (2002) Direct force measurement of silicone-and hydrocarbon-based ABA triblock surfactants in alcoholic media by atomic force microscopy. /. Colloid Interface Sci., 256(2), 331 40. [Pg.202]

See D. C. Prieve, "Measurement of colloidal forces with TIRM," Adv. Colloid Interface Sci., 82, 93-125 (1999), for a clear description of technique as well as references also S. G. Bike, "Measuring colloidal forces using evanescent wave scattering," Curr. Opin. in Colloid Interface Sci., 5, 144-50 (2000). [Pg.353]

Up to date, besides the SFA, several non-interferometric techniques have been developed for direct measurements of surface forces between solid surfaces. The most popular and widespread is atomic force microscopy, AFM [14]. This technique has been refined for surface forces measurements by introducing the colloidal probe technique [15,16], The AFM colloidal probe method is, compared to the SFA, rapid and allows for considerable flexibility with respect to the used substrates, taken into account that there is no requirement for the surfaces to be neither transparent, nor atomically smooth over macroscopic areas. However, it suffers an inherent drawback as compared to the SFA It is not possible to determine the absolute distance between the surfaces, which is a serious limitation, especially in studies of soft interfaces, such as, e.g., polymer adsorption layers. Another interesting surface forces technique that deserves attention is measurement and analysis of surface and interaction forces (MASIF), developed by Parker [17]. This technique allows measurement of interaction between two macroscopic surfaces and uses a bimorph as a force sensor. In analogy to the AFM, this technique allows for rapid measurements and expands flexibility with respect to substrate choice however, it fails if the absolute distance resolution is required. [Pg.27]

Until fairly recently, the theories described in Secs. II and III for particle-surface interactions could not be verified by direct measurement, although plate-plate interactions could be studied by using the surface forces apparatus (SFA) [61,62]. However, in the past decade two techniques have been developed that specifically allow one to examine particles near surfaces, those being total internal reflection microscopy (TIRM) and an adapted version of atomic force microscopy (AFM). These two methods are, in a sense, complementary. In TIRM, one measures the position of a force-and torque-free, colloidal particle approximately 7-15 fim in dimension as it interacts with a nearby surface. In the AFM method, a small (3.5-10 jam) sphere is attached to the cantilever tip of an atomic force microscope, and when the tip is placed near a surface, the force measured is exactly the particle-surface interaction force. Hence, in TIRM one measures the position of a force-free particle, while in AFM one measures the force on a particle held at a fixed position. [Pg.281]


See other pages where Colloidal forces measurements is mentioned: [Pg.84]    [Pg.84]    [Pg.84]    [Pg.84]    [Pg.297]    [Pg.14]    [Pg.2]    [Pg.120]    [Pg.137]    [Pg.268]    [Pg.40]    [Pg.53]    [Pg.202]    [Pg.207]    [Pg.53]    [Pg.54]    [Pg.682]    [Pg.78]    [Pg.202]    [Pg.602]   


SEARCH



Colloid measurement

Colloidal forces

Force measurement

© 2024 chempedia.info