Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Neutral polymer

A process based on saponification of ethylene—acrylate ester copolymers has been practiced commercially in Japan (29). The saponification naturally produces fully neutralized polymer, and it is then necessary to acidify in order to obtain a pardy neutralized, melt-processible product. Technology is described to convert the sodium ionomer produced by this process to the zinc type by soaking pellets in zinc acetate solution, followed by drying (29). [Pg.408]

Anionic and neutral polymers are usually analyzed successfully on Syn-Chropak GPC columns because they have minimal interaction with the appropriate mobile-phase selection however, cationic polymers adsorb to these columns, often irreversibly. Mobile-phase selection for hydrophilic polymers is similar to that for proteins but the solubilities are of primary importance. Organic solvents can be added to the mobile phase to increase solubility. In polymer analysis, ionic strength and pH can change the shape of the solute from mostly linear to globular therefore, it is very important to use the same conditions during calibration and analysis of unknowns (8). Many mobile phases have been used, but 0.05-0.2 M sodium sulfate or sodium nitrate is common. [Pg.316]

Scientific (Northbrook, IL) contain a silica support with a -y-glycidoxypropylsi-lane-bonded phase to minimize interaction with anionic and neutral polymers. The columns come in five different pore sizes ranging from 100 to 4000 A. The packing material has a diameter from 5 to 10 /cm and yields in excess of 10,000 plate counts. With a rigid silica packing material, the columns can withstand high pressure (maximum of 3000 psi) and can be used under a variety of salt and/or buffered conditions. A mobile phase above pH 8, however, will dissolve the silica support of the column (21). A summary of the experimental conditions used for Synchropak columns is described in Table 20.8. [Pg.572]

Water-soluble pAM neutral polymer interacts with ions of the solution through the complex formation between amide groups and hydrated ions. [Pg.133]

Adsorption of macromolecules has been widely investigated both theoretically [9—12] and experimentally [13 -17]. In this paper our purpose was to analyze the probable structures of polymeric stationary phases, so we shall not go into complicated mathematical models but instead consider the main features of the phenomenon. The current state of the art was comprehensively summarized by Fleer and Lyklema [18]. According to them, the reversible adsorption of macromolecules and the structure of adsorbed layers is governed by a subtle balance between energetic and entropic factors. For neutral polymers, the simplest situation, already four contributor factors must be distinguished ... [Pg.138]

In the following paper, the possibility of equilibration of the primarily adsorbed portions of polymer was analyzed [20]. The surface coupling constant (k0) was introduced to characterize the polymer-surface interaction. The constant k0 includes an electrostatic interaction term, thus being k0 > 1 for polyelectrolytes and k0 1 for neutral polymers. It was found that, theoretically, the adsorption characteristics do not depend on the equilibration processes for k0 > 1. In contrast, for neutral polymers (k0 < 1), the difference between the equilibrium and non-equilibrium modes could be considerable. As more polymer is adsorbed, excluded-volume effects will swell out the loops of the adsorbate, so that the mutual reorientation of the polymer chains occurs. [Pg.139]

The chemical adsorption of a relatively high molecular weight neutral polymer (poly(succinimide), M = 13000) on aminopropyl-Vydac 101 TP silica gel was applied by Alpert [47, 48] to prepare a reactive composite support for use in cation-exchange [47] and hydrophobic-interaction [48] chromatography of pro-... [Pg.150]

Oxidized regions are uniform in composition and consequently in charge density at every polarization time. Regions of neutral polymer have, as well, a uniform composition. Both oxidized and neutral regions have an amorphous structure. [Pg.383]

The relaxation of a mole of segments on the oxidized/neutral polymer borders involves the loss of qr electrons and the subsequent storage of qr positivecharges. At the same time, qr solvated monovalent anions penetrate into the polymer from the solution. [Pg.383]

Note that when the concentration of added salt is very low, Debye length needs to be modified by including the charge contribution of the dissociating counterions from the polyelectrolytes. Because the equilibrium interaction is used, their theory predicts that the intrinsic viscosity is independent of ion species at constant ionic strength. At very high ionic strength, the intrachain electrostatic interaction is nearly screened out, and the chains behave as neutral polymers. Aside from the tertiary effect, the intrinsic viscosity will indeed be affected by the ionic cloud distortion and thus cannot be accurately predicted by their theory. [Pg.105]

Preteatment with pectinases improves meehanieal debarking of wood significantly. In addition to polygalacturonase, enzymes hydrolysing the neutral polymers in cambial tissue (arabinanase, galactanase, and glucanase) are needed for effective solubilization of spruce cambium. [Pg.982]

Neutral polymers, such as the styrene-divinylbenzene type,... [Pg.907]

Reduction of Poly(2-cyano-l,3-phenylene arylene ether), 20 Twenty-five mL of a 1.0 M solution of lithium aluminum hydride (LAH) in THF was cooled to 0° C before adding a solution of 1.64 g (5.0 meg) of 20 in 120 mL of THF. The resultant slurry was stirred for 24 h at 0° C, refluxed for 1 h, recooled to 5° C, and the excess LAH decomposed with 2 mL of water. The volume of the solution was reduced to 25 mL before pouring the mixture into 500 mL of 5% HC1 to dissociate the amine aluminum salt complex and precipitate the polymer. The polymer was recovered by filtration, reslurried in 20 mL of water and the pH adjusted to 9.0 with NaOH. After recovery of the neutralized polymer was recovered, it was dried in vacuo redissolved in CHC13, and reprecipitated using water as the nonsolvent. Final drying in vacuo for 24 h at 35° C left 1.2 g (72.3%) of poly[oxy-l,4-phenylene-(l-methylethylidene)-l, 4 -phenylene-oxy-(2"-aminomethyl)-l",3"-phenylene], 21, [n] (CHCI3) 0.3 dl/g. [Pg.13]

Synthetic polymers are best known for their insulating dielectric properties which have been exploited for numerous applications in both the electrical and electronic industries. It was found recently that some polymers can also be rendered conductive by an appropriate treatment, thus opening the way to a new field of applications of these materials (2, 3). Usually, electrical conductivity is obtained by doping a neutral polymer, rich in unsaturation, with donor or acceptor molecules. These polymers are rather difficult to synthesize, which makes them very expensive besides they are often sensitive to environmental agents, like oxygen or humidity, thus restricting their practical use to oxygen-free systems. [Pg.202]

In fact this "unhydrolyzed" polyacrylamide sample is slightly charged and its low polyectrolyte character is confirmed by a slight difference of red values at pH 7 and 5, for salt free solutions. A really neutral polymer should be necessary to differentiate low effects of electrostatic interactions from non ionic interactions. coordination binding at low pH and hydrogen bonds at pH 7. Nevertheless, at this pH, the adsorption of the chain on Al(0H)3 aggregates can probably be considered as the main origin of the loss of viscosity. [Pg.136]

An important point concerning the spectra in Figure 3.71 is that at intermediate doping levels three principal absorption bands can be seen, at c. l.OeV, 2.7eV and 3.6eV, that are not simply the superposition of the as-grown and neutral polymer absorptions. The authors interpreted this observation in terms of the homogeneous doping of the film throughout its bulk, not just the oxidation of the surface layer or the layer next to the electrode. [Pg.338]

In the previous sections, we described the overall features of the heat-induced phase transition of neutral polymers in water and placed the phenomenon within the context of the general understanding of the temperature dependence of polymer solutions. We emphasised one of the characteristic features of thermally responsive polymers in water, namely their increased hydropho-bicity at elevated temperature, which can, in turn, cause coagulation and macroscopic phase separation. We noted also, that in order to circumvent this macroscopic event, polymer chemists have devised a number of routes to enhance the colloidal stability of neutral globules at elevated temperature by adjusting the properties of the particle-water interface. [Pg.28]

It turns out that in solutions of c < 0.1 gL 1 thermosensitive homopolymers, such as PNIPAM, PVCL, and PVME, themselves, form stable colloids in water at elevated temperature in the absence of additives or chemical modification [141-147]. The colloids remain stable upon prolonged heat treatment, without detectable aggregation or precipitation. Also, core-shell particles consisting of PNIPAM and a hydrophobic block are stable not only below but also above the LCST up to 50 °C, when the PNIPAM block is expected to be insoluble [185]. Factors that determine the colloidal stability as defined in Sect. 1.1 do not explain, it seems, their stability. In this review we have compiled a fist of all the reported instances where the formation of stable particles was detected in aqueous solutions of neutral thermosensitive neutral polymers at elevated temperature. We present studies of homopolymers, as well as their copolymers consisting of thermosensitive fragments and ei-... [Pg.28]

Fluorene-[2,5-di(aminoethoxy)benzene] copolymers 370a,b have been synthesized by Huang and coworkers [437,438] as precursors to the first water-soluble cationic PFs 371, 372a-c (Scheme 2.58). Whereas the neutral polymers 370a,b readily dissolve in common organic solvents such as THF, chloroform, toluene, and xylene (but not in dimethyl sulfoxide (DMSO), methanol, or water) their quaternization produces material 371, which is insoluble in chloroform or THF but completely soluble in DMSO, methanol, and water. For... [Pg.178]


See other pages where Neutral polymer is mentioned: [Pg.455]    [Pg.484]    [Pg.40]    [Pg.41]    [Pg.172]    [Pg.622]    [Pg.331]    [Pg.135]    [Pg.142]    [Pg.144]    [Pg.337]    [Pg.341]    [Pg.78]    [Pg.21]    [Pg.104]    [Pg.197]    [Pg.436]    [Pg.4]    [Pg.421]    [Pg.428]    [Pg.338]    [Pg.353]    [Pg.20]    [Pg.24]    [Pg.25]    [Pg.26]    [Pg.27]    [Pg.89]    [Pg.206]    [Pg.14]    [Pg.14]   
See also in sourсe #XX -- [ Pg.202 ]

See also in sourсe #XX -- [ Pg.7 , Pg.8 , Pg.9 , Pg.10 , Pg.11 , Pg.111 ]

See also in sourсe #XX -- [ Pg.250 ]

See also in sourсe #XX -- [ Pg.167 ]




SEARCH



Alkaline Solution-Neutralized Polyacrylate Polymer

Conducting polymers electrical neutralization

Conducting polymers neutral state properties

Neutral Polymer Brushes

Neutral Polymer in Contact with an Electrolyte Solution

Neutral Polymers Hydrodynamic Interaction

Neutral amphiphilic polymers

Neutral and Doped Polymers

Neutral polymer slow modes

Neutral polymers, adsorption

Neutral polymers, solubilization

Neutral water-soluble polymers

Polymer conformation neutralization effects

Polymer films neutral

Polymer groups neutral

Polymers charge neutralization

Polymers charge patch neutralization

Polymers simple charge neutralization

Transport neutral polymers

Worlds First Greenhouse-Gas-Neutral Polymer

© 2024 chempedia.info