Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chlorofluorocarbon types

Air pollution (qv) problems are characteri2ed by their scale and the types of pollutants involved. Pollutants are classified as being either primary, that is emitted direcdy, or secondary, ie, formed in the atmosphere through chemical or physical processes. Examples of primary pollutants are carbon monoxide [630-08-0] (qv), CO, lead [7439-92-1] (qv), Pb, chlorofluorocarbons, and many toxic compounds. Notable secondary pollutants include o2one [10028-15-6] (qv), O, which is formed in the troposphere by reactions of nitrogen oxides (NO ) and reactive organic gases (ROG), and sulfuric and nitric acids. [Pg.377]

Freons. types of chlorofluorocarbons, at one time were used extensively in spray cans and as coolants in refrigerators and air conditioners. Unfortunately, they contribute to global warming and attack the Earth s protective ozone layer. One of the most promising substitutes is C2H2F4, which is called HFC-134a in industry. The reaction... [Pg.119]

Freon is a commercial trademark for a series of fluorocarbon products used in refrigeration and air-conditioning equipment, as aerosol propellants, blowing agents, fire extinguishing agents, and cleaning fluids and solvents. Many types contain chlorine as well as fluorine, and should be called chlorofluorocarbons (CFCs) [85,86]. [Pg.74]

Specific bans on chemicals or uses have not been the most important outcome of TSCA. Only one type of chemical, PCBs, was specifically targeted in the original law and they are now outlawed in most of their uses. EPA administration of the law in its early years led to a ban of chlorofluorocarbons as aerosol propellants, restrictions on dioxin waste disposal, rules on asbestos use, and testing rules on chlorinated solvents. It has led to a central bank of information on existing commercial chemicals, procedures for further testing of hazardous chemicals, and detailed permit requirements for submission of proposed new commercial chemicals. [Pg.489]

Acetyl peroxynitrate (18) and perfluoroacetyl peroxynitrate (19), two important atmospheric oxidation products of hydrocarbons (formation of 18) or chlorofluorocarbon replacements, such as CF3CH3 (formation of 19), preferentially adopt a gauche conformation (C—O—O—N = 84.7° for 18 and 85.8° for 19 electron diffraction). The two peroxides are characterized by comparatively short 0—0 bonds on one side and long 0°—N connectivities (Table 5) on the other. The observed O —N distances may be explained on the basis of an no ct od-n orbital overlap. This type of interaction lowers the 0°—N bond order and could explain the low bond dissociation energies of this connectivity in peroxides 18 and 19 (118 4 klmol for both compounds). It should be noted that this interpretation does not reflect a possible r-type interaction between a lone pair at 0° and virtual orbitals of the nitro group and therefore requires future investigation. [Pg.103]

Third, even where it is clear that a particular type of chemical has caused a particular incident of damage, and we can identify who was causally responsible for the existence of that chemical (if not necessarily its presence in a particular location), the first condition, that the conduct transgressed a norm, is often not met. This is because those norms require only that foreseeable consequences are taken into account one is not responsible for consequences that could not have been foreseen. Thus Du Pont, the main manufacturer of chlorofluorocarbons (CFCs) — non-toxic and non-flammable chemicals that were used as a refrigerant and aerosol propellant for many decades — have not been held to account for the hole in the ozone layer caused by those chemicals because at the time the key decisions to manufacture them were made, in the 1930s, these effects could not have been predicted (Colborn et al, 1996, pp243-245). [Pg.148]

CFC Abbreviation for chlorofluorocarbon, a type of organic compound in which some or all of the hydrogen atoms of an alkane have been replaced by fluorine and chlorine atoms. These substances are generally unreactive but they can diffuse into the stratosphere where they break down under the influence of ultraviolet light. The products of this photochemical process then react with ozone (in the ozone layer). Because of this, their use... [Pg.241]

Halocarbons, a class of polar solvents, are hydrocarbons with an attached halogen. There are commonly three types of halocarbon solvents those based on chlorine, fluorine, and a combination of the two. They are all powerful degreasing materials and can be particularly effective in removing polar contaminants from glass. The chlorofluorocarbons are currently under review because they cause environmental damage to the ozone layer.1... [Pg.239]

Salts of the tetrafluoroaluminate (TFA) anion have been known for many years. Yet aqueous routes to pure materials have not been established despite the substantial amount of literature available on the subject. The present review will discuss the various synthetic methods that have been employed and will demonstrate a revised method for preparing pure TFA salts. These materials are important because TFA is able to stimulate various guanosine nucleotide-binding proteins (G-proteins) and inhibit P-type ATPases by serving as a nonhydrolyzing phosphate mimic. Additionally, various TFA salts serve as precursors to aluminum trifluoride, which is used as a catalyst for chlorofluorocarbon isomerizations and fluorinations. [Pg.181]

In this chapter, recent advances in our understanding of catalytic fluorination under heterogeneous conditions are surveyed from the standpoint of catalyst properties, including developments based on the use of mixed metal fluorides having different structural types, and reaction mechanisms. Much of the newer work has been the result of the need to replace chlorofluorocarbons (CFCs) by alternatives, hydrofluorocarbons (HFCs) or, more controversially, hydrochlorofluorocarbons (HCFCs), following adoption of the Montreal and successor Protocols [2,3]. Where relevant, aspects of catalytic hydrogenolysis, where fluorides have been used as replacement supports in the conventional palladium/carbon catalysts, and isomerization reactions are included. [Pg.367]

For many years chlorofluorocarbons (CFCs) were manufactured in huge quantities by Swarts-type processes but, after the introduction of the Montreal Protocol legislation, these compounds were superseded by non-ozone depleting HFCs (see Chapter 1). Fortunately, much of the chemistry developed for the manufacture of the CFCs can be adapted for the production of HFCs [7, 12-15]. [Pg.25]

Pharmaceutical inhalation aerosols are widely used for treatment of diseases such as asthma and chronic bronchitis. There are three basic types of aerosol products the propellant-driven metered-dose inhalers, the dry powder inhalers, and the nebulizers. Because of the ozone-depleting and greenhouse effects of the chlorofluorocarbon (CFG) propellants, interest in the dry powder aerosols has risen in recent years. [Pg.1648]

Pulmonary delivery of drugs is the administration route of choice in respiratory diseases such as chronic obstructive pulmonary disease and asthma. Different devices are available, including metered-dose inhalers, dry powder inhalers, and nebulizers, and nearly 80% of asthmatic patients worldwide use metered dose inhalers (1). Chlorofluorocarbons have been used as an aerosol propellant in metered-dose inhalers however, they deplete the ozone layer and are being replaced by more environment-friendly propellants, even though the contribution of aerosols of this type to the total global burden of chlorofluorocarbons is less than 0.5%. The first chloro-fluorocarbon-free metered-dose inhaler for asthma treatment was approved by the FDA in 1996 (2) and the European Union has set 2005 as a target date for the withdrawal of all chlorofluorocarbon-based inhalers (1). In the USA, prescriptions for chlorofluorocarbon-free medications rose from 16.4 million in 1996 to 33.8 million in 2000 (2). Most of the chlorofluorocarbon-free medications were steroids for nasal use (27.2 million). However, chlorofluorocarbon-containing medications stiU represented two-thirds of all prescriptions and increased from 63.0 to 67.6 million dispensed (2). [Pg.1758]

The cost of raw materials for use in phenolic foams is low, but since this foam has the weak points listed above, it cannot exceed polyurethane foam in cost performance. Resol-type foams and benzylic ether-type foams use chlorofluorocarbon (CFC) as a foamimg agent. It is necessary to develop a new foaming agent which does not destroy the ozone layer in the atmosphere. When these problems are solved phenolic foam applications will make further rapid progress. [Pg.218]

Catalysis are classified into two types homogeneous and heterogeneous. In homogeneous catalysis the catalyst is present in the same phase as the reactants, as when a gas-phase catalyst speeds up a gas-phase reaction, or a species dissolved in solution speeds up a reaction in solution. Chlorofluorocarbons and oxides of nitrogen are homogeneous catalysts responsible for the destruction of ozone in the stratosphere. These reactions are examined in more detail in Section 20.5. A second example is the catalysis of the oxidation-reduction reaction... [Pg.776]

It is important to know whether molecules being released in the lower atmosphere can reach the stratosphere and affect the amount of ozone in it. Certain types of air pollution give rise to radicals that catalyze ozone depletion. A radical is a chemical species that contains an odd (unpaired) electron, and it is usually formed by the rupture of a covalent bond to form a pair of neutral species. One pressing concern involves chlorofluorocarbons (CFCs)—compounds of chlorine, fluorine, and carbon used as refrigerants and as propellants in some aerosol sprays. CFCs are nonreactive at sea level but can photodissociate in the stratosphere ... [Pg.847]


See other pages where Chlorofluorocarbon types is mentioned: [Pg.505]    [Pg.148]    [Pg.192]    [Pg.1089]    [Pg.26]    [Pg.67]    [Pg.5]    [Pg.44]    [Pg.74]    [Pg.202]    [Pg.117]    [Pg.196]    [Pg.214]    [Pg.247]    [Pg.225]    [Pg.48]    [Pg.35]    [Pg.721]    [Pg.1089]    [Pg.83]    [Pg.148]    [Pg.788]    [Pg.505]    [Pg.1208]    [Pg.153]    [Pg.175]    [Pg.1052]    [Pg.1089]    [Pg.163]    [Pg.1038]    [Pg.2774]    [Pg.43]   
See also in sourсe #XX -- [ Pg.2270 ]




SEARCH



Chlorofluorocarbons

© 2024 chempedia.info