Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical reactor types

These considerations are only valid for isothermal reactors, and we shall see in the next two chapters that the possibility of temperature variations in the reactor can lead to much more interesting behavior. We will also see in Chapter 7 that with catalytic reactors the situation becomes even more complicated. However, these simple ideas are useful guides in the choice of a chemical reactor type to carry out multiple-reaction systems. We will stiU use these principles as the chemical reactors become more complicated and additional factors need to be included. [Pg.196]

Reagent Pressure Torr Power, kW Reagent flow, mol/s composition Products Plasma-chemical reactor type... [Pg.615]

In this chapter we discuss chemical reactor types and show how, despite the variety of reactions and the almost unlimited variety and possibilities for reactor design, only a few equations are needed to describe the reaction progress. Reactor modeling is, therefore, in many cases comparatively straightforward, and is facilitated by the classification into ideal reactors and real reactors. [Pg.296]

The search for Turing patterns led to the introduction of several new types of chemical reactor for studying reaction-diffusion events in feedback systems. Coupled with huge advances in imaging and data analysis capabilities, it is now possible to make detailed quantitative measurements on complex spatiotemporal behaviour. A few of the reactor configurations of interest will be mentioned here. [Pg.1111]

Most chemically reacting systems tliat we encounter are not tliennodynamically controlled since reactions are often carried out under non-equilibrium conditions where flows of matter or energy prevent tire system from relaxing to equilibrium. Almost all biochemical reactions in living systems are of tliis type as are industrial processes carried out in open chemical reactors. In addition, tire transient dynamics of closed systems may occur on long time scales and resemble tire sustained behaviour of systems in non-equilibrium conditions. A reacting system may behave in unusual ways tliere may be more tlian one stable steady state, tire system may oscillate, sometimes witli a complicated pattern of oscillations, or even show chaotic variations of chemical concentrations. [Pg.3054]

Sasol produces synthetic fuels and chemicals from coal-derived synthesis gas. Two significant variations of this technology have been commercialized, and new process variations are continually under development. Sasol One used both the fixed-bed (Arge) process, operated at about 240°C, as weU as a circulating fluidized-bed (Synthol) system operating at 340°C. Each ET reactor type has a characteristic product distribution that includes coproducts isolated for use in the chemical industry. Paraffin wax is one of the principal coproducts of the low temperature Arge process. Alcohols, ketones, and lower paraffins are among the valuable coproducts obtained from the Synthol process. [Pg.164]

Two modifications of the duidized-bed reactor technology have been developed. In the first, two gas-phase duidized-bed reactors coimected to one another have been used by Mobil Chemical Co. and Union Carbide to manufacture HDPE resins with broad MWD (74,75). In the second development, a combination of two different reactor types, a small slurry loop reactor followed by one or two gas-phase duidized-bed reactors (Sphetilene process), was used by Montedision to accommodate a Ziegler catalyst with a special particle morphology (76,77). This catalyst is able to produce PE resins in the form of dense spheres with a diameter of up to 4—5 mm such resins are ready for shipping without pelletization. [Pg.385]

In plutonium-fueled breeder power reactors, more plutonium is produced than is consumed (see Nuclearreactors, reactor types). Thus the utilisa tion of plutonium as a nuclear energy or weapon source is especially attractive to countries that do not have uranium-enrichment faciUties. The cost of a chemical reprocessing plant for plutonium production is much less than that of a uranium-235 enrichment plant (see Uranium and uranium compounds). Since the end of the Cold War, the potential surplus of Pu metal recovered from the dismantling of nuclear weapons has presented a large risk from a security standpoint. [Pg.191]

Variables It is possible to identify a large number of variables that influence the design and performance of a chemical reactor with heat transfer, from the vessel size and type catalyst distribution among the beds catalyst type, size, and porosity to the geometry of the heat-transfer surface, such as tube diameter, length, pitch, and so on. Experience has shown, however, that the reactor temperature, and often also the pressure, are the primary variables feed compositions and velocities are of secondary importance and the geometric characteristics of the catalyst and heat-exchange provisions are tertiary factors. Tertiary factors are usually set by standard plant practice. Many of the major optimization studies cited by Westerterp et al. (1984), for instance, are devoted to reactor temperature as a means of optimization. [Pg.705]

Many configurations of laboratory reactors have been employed. Rase (Chemical Reactor Design for Proce.s.s Plants, Wiley, 1977) and Shah (Ga.s-Liquid-Solid Reactor Design, McGraw-Hill, 1979) each have about 25 sketches, and Shah s bibliography has 145 items classified into 22 categories of reactor types. Jankowski et al. (Chemlsche Tech-nik, 30, 441 46 [1978]) illustrate 25 different lands of gradientless laboratory reactors for use with solid catalysts. [Pg.707]

Other types of selective systems employ multiple final control elements or multiple controllers. In some applications, several manipulated variables are used to control a single process variable (also called split-range control). Typical examples include the adjustment of both inflow and outflow from a chemic reactor in order to control reactor pressure or the use of both acid and base to control pH in waste-water treatment. In this approach, the selector chooses from several controller outputs which final control element should be adjusted (Marlin, Process Control, McGraw-Hill, New York, 1995). [Pg.734]

A hst of 74 GLS reacdions with hterature references has been compiled by Shah Gas-Liquid-Solid Reactions, McGraw-HiU, 1979), classified into groups where the solid is a reactant, or a catalyst, or inert. A hst of 75 reactions made by Ramachandran and Chaudhari (Three-Phase Chemical Reactors, Gordon and Breach, 1983) identifies reactor types, catalysts, temperature, and pressure. They classify the processes according to hydrogenation of fatty oils, hydrodesulfurization, Fischer-Tropsch reactions, and miscellaneous hydrogenations and oxidations. [Pg.2118]

The properties of a polymer depend not only on its gross chemical composition but also on its molecular weight distribution, copolymer composition distribution, branch length distribution, and so on. The same monomer(s) can be converted to widely differing polymers depending on the polymerization mechanism and reactor type. This is an example of product by process, and no single product is best for all applications. Thus, there are several commercial varieties each of polyethylene, polystyrene, and polyvinyl chloride that are made by distinctly different processes. [Pg.492]

The selection of reactor type in the traditionally continuous bulk chemicals industry has always been dominated by considering the number and type of phases present, the relative importance of transport processes (both heat and mass transfer) and reaction kinetics plus the reaction network relating to required and undesired reactions and any aspects of catalyst deactivation. The opportunity for economic... [Pg.321]

Simulation models are essential tools for reactor design and optimization. A general simulation model consists of a reactor and a reaction model [1]. The reactor model accounts for the reactor type and for the flow pattern in the reactor, while the reaction or kinetic model describes the kinetics of the chemical reactions occurring. [Pg.53]

For a specific comparison of the two different reactor types, channels of 300 pm diameter were considered. The equivalent pellet size for that case is 675 pm. As a characteristic quantity, the conversion at the reactor exits was computed for different flow velocities and a range of Damkohler numbers spanning three orders of magnitude. The results for the two different reactor types obtained in such a way were practically indistinguishable. This suggests that the different reactors considered in this study are equivalent as far as chemical conversion is concerned. [Pg.34]

In continuous flow systems, the expenditure in mechanical energy necessary to run a process is directly proportional to the pressure drop over the system. Hence the pressure drop is an important figure determining the operating costs of a device. After having verified the chemical equivalence of the two reactor types introduced above, the question arises of whether using a micro-channel reactor instead of a fixed-bed reactor allows a decrease in the pressure drop. In order to estimate the pressure drop in the fixed-bed reactor, the Carman-Kozeney hydraulic diameter model (see, e.g., [116]) was used ... [Pg.34]

Physical form and properties are directly linked to and impact other aspects of a process that is, reactor type, type of mixing, throughput that is, how quickly a chemical will dissolve in a solvent or precipitate out, the ease of separation of two liquids, and so on. [Pg.230]

There are several criteria based on which chemical reactors are classified (1) mode of operation, (2) number and type of phases participating, (3) thermal conditions, and (4) design features. [Pg.257]

Other reactor types are also used for gas-liquid reactions, but they are not very common in fine chemicals manufacture. Spray towers and jet reactors are used when the liquid phase is to be dispersed. In spray towers the liquid is sprayed at the top of the reactor while the gas is flowing upward. The spray reactor is useful when a solid product, possibly suspended in the liquid, is formed, or if the gas-phase pressure drop must be minimized. In a jet reactor, the liquid is introduced to the reaction zone through a nozzle. The gas flows in, being sucked by the liquid. [Pg.267]

The trickle-bed reactor (TBR) and slurry reactor (SR) are the most commonly used for multiphase reactions in the chemical industries. A new reactor type, the monolithic reactor (MR), offers many advantages. Therefore, these three types of reactors are discussed below in more detail. Their general characteristics are given in Table 5.4-44. With respect to slurry reactors, the focus will be on mechanically agitated slurry reactors (MASR) because these are more widely used in fine chemicals manufacture than column slurry reactors. [Pg.389]

Chapter 3 concerns the dynamic characteristics of stagewise types of equipment, based on the concept of the well-stirred tank. In this, the various types of stirred-tank chemical reactor operation are considered, together with allowance for heat effects, non-ideal flow, control and safety. Also included is the modelling of stagewise mass transfer applications, based on liquid-liquid extraction, gas absorption and distillation. [Pg.707]

Chemical Kinetics, Tank and Tubular Reactor Fundamentals, Residence Time Distributions, Multiphase Reaction Systems, Basic Reactor Types, Batch Reactor Dynamics, Semi-batch Reactors, Control and Stability of Nonisotheimal Reactors. Complex Reactions with Feeding Strategies, Liquid Phase Tubular Reactors, Gas Phase Tubular Reactors, Axial Dispersion, Unsteady State Tubular Reactor Models... [Pg.722]

In the preceding chapter, the choice of reactor type was made on the basis of the most appropriate concentration profile as the reaction progressed, in order to minimize reactor volume for single reactions or maximize selectivity (or yield) for multiple reactions for a given conversion. However, there are still important effects regarding reaction conditions to be considered. Before considering reaction conditions, some basic principles of chemical equilibrium need to be reviewed. [Pg.97]

One feature that distinguishes the chemical engineer from other types of engineers is the ability to analyze systems in which chemical reactions are occurring and to apply the results of his analysis in a manner that benefits society. Consequently, chemical engineers must be well acquainted with the fundamentals of chemical kinetics and the manner in which they are applied in chemical reactor design. This textbook provides a systematic introduction to these subjects. [Pg.1]


See other pages where Chemical reactor types is mentioned: [Pg.515]    [Pg.88]    [Pg.505]    [Pg.218]    [Pg.1115]    [Pg.69]    [Pg.297]    [Pg.301]    [Pg.147]    [Pg.134]    [Pg.554]    [Pg.1]    [Pg.190]    [Pg.261]    [Pg.302]    [Pg.291]    [Pg.229]    [Pg.557]    [Pg.240]    [Pg.194]    [Pg.235]    [Pg.282]    [Pg.394]    [Pg.554]    [Pg.206]   
See also in sourсe #XX -- [ Pg.103 ]




SEARCH



Chemical reactors

Chemical reactors tank-type

Equations tank-type chemical reactor

Reactor types

Reactors chemical reactor

Reactors reactor types

© 2024 chempedia.info