Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical reaction ionic

With this vast variety, it is usually possible to tailor the solvents to specific chemical reactions. Ionic liquids have a range of physical chemical properties that can be tuned with a precision that is hard to imagine for a given reaction. Ionic liquids are good solvents for a wide range of inorganic, organic, and polymeric materials. There are ionic liquids that will dissolve covalent compounds. Ionic liquids can lead to process intensification. [Pg.170]

In numerous chemical reactions, ionic species are formed as intermediates which are subsequently converted into more stable, neutral, reaction products. Examples are provided by numerous well-known substitution reactions such as Friedel-Crafts acylations, nitration reactions, or chlorination reactions. The initial steps of these reactions are completely analogous to reactions of type (3) or (4). [Pg.194]

In Lesson 6-2,1 mentioned that displacement reactions are a bit misleading at times. Sometimes, a product that is shown on the product side of the equation does not really appear in the physical chemical reaction. The reason for this has to do with the solubility of ionic substances in water. If a particular product is soluble, it will stay dissolved in the aqueous solution. If a product is insoluble, it will appear as a solid precipitate in the test vessel. It is important to know which products stay dissolved in the water, so we can make proper identification of the precipitates that do form as the result of the chemical reactions. Ionic equations are more realistic representations of these reactions that take place in aqueous solution. Ionic equations show the individual ions that exist in solution. When we take an ionic displacement reaction and remove the information that is misleading, we produce a net ionic equation. [Pg.192]

Electrochemistry is concerned with the effect of electrical voltages and currents on chemical reactions (ionics) and chemical changes which produce the voltages and currents (electrodics). This is illustrated in Table 9.1 where ionics is governed by Faraday s laws, whereas electrodics is determined by the Nemst equation. [Pg.145]

There exist some differences in properties between the two materials, such as their chemical constituents, electronic band structure, chemical reactions, ionicity, neutron absorption, and impurities. Because of these differences, cBN is superior to diamond for some applications. [Pg.545]

In the preceding sections we have considered the overall change in a chemical reaction. Factors contributing to this change will now be considered for simple covalent and ionic systems. [Pg.71]

Because they are weak acids or bases, the iadicators may affect the pH of the sample, especially ia the case of a poorly buffered solution. Variations in the ionic strength or solvent composition, or both, also can produce large uncertainties in pH measurements, presumably caused by changes in the equihbria of the indicator species. Specific chemical reactions also may occur between solutes in the sample and the indicator species to produce appreciable pH errors. Examples of such interferences include binding of the indicator forms by proteins and colloidal substances and direct reaction with sample components, eg, oxidising agents and heavy-metal ions. [Pg.468]

Collectors ndFrothers. Collectors play a critical role ia flotation (41). These are heteropolar organic molecules characterized by a polar functional group that has a high affinity for the desired mineral, and a hydrocarbon group, usually a simple 2—18 carbon atom hydrocarbon chain, that imparts hydrophobicity to the minerals surface after the molecule has adsorbed. Most collectors are weak acids or bases or their salts, and are either ionic or neutral. The mode of iateraction between the functional group and the mineral surface may iavolve a chemical reaction, for example, chemisorption, or a physical iateraction such as electrostatic attraction. [Pg.412]

Chapters 1 and 2 have been reorganised and updated in line with recent developments. A new chapter on the Future of Purification has been added. It outlines developments in syntheses on solid supports, combinatorial chemistry as well as the use of ionic liquids for chemical reactions and reactions in fluorous media. These technologies are becoming increasingly useful and popular so much so that many future commercially available substances will most probably be prepared using these procedures. Consequently, a knowledge of their basic principles will be helpful in many purification methods of the future. [Pg.621]

Crystal structure, crystal defects and chemical reactions. Most chemical reactions of interest to materials scientists involve at least one reactant in the solid state examples inelude surfaee oxidation, internal oxidation, the photographie process, electrochemieal reaetions in the solid state. All of these are critieally dependent on crystal defects, point defects in particular, and the thermodynamics of these point defeets, especially in ionic compounds, are far more complex than they are in single-component metals. I have spaee only for a superficial overview. [Pg.121]

The basic function of lysis processes is to split molecules to permit further treatment. Hydrolysis is a chemical reaction in which water reacts with another substance. In the reaction, the water molecule is ionized while the other compound is split into ionic groups. Photolysis, another lysis process, breaks chemical bonds by irradiating a chemical with ultraviolet light. Catalysis uses a catalyst to achieve bond cleavage. [Pg.147]

Phase-transfer catalysis (Section 22.5) Method for increasing the rate of a chemical reaction by transporting an ionic reactant from an aqueous phase where it is solvated and less reactive to an organic phase where it is not solvated and is more reactive. Typically, the reactant is an anion that is carried to the organic phase as its quaternary ammonium salt. [Pg.1290]

The chemical reactions of IF5 have been more extensively and systematically studied because the compound can be handled in glass apparatus and is much less vigorous a reagent than the other pentafluorides. The (very low) electrical conductivity of the pure liquid has been ascribed to slight ionic dissociation according to the equilibrium... [Pg.834]

Electronic structure methods are aimed at solving the Schrodinger equation for a single or a few molecules, infinitely removed from all other molecules. Physically this corresponds to the situation occurring in the gas phase under low pressure (vacuum). Experimentally, however, the majority of chemical reactions are carried out in solution. Biologically relevant processes also occur in solution, aqueous systems with rather specific pH and ionic conditions. Most reactions are both qualitatively and quantitatively different under gas and solution phase conditions, especially those involving ions or polar species. Molecular properties are also sensitive to the environment. [Pg.372]

An alternative avenue for the exploration of the polarity of a solvent is by investigation of its effect on a chemical reaction. Since the purpose of this book is to review the potential application of ionic liquids in synthesis, this could be the most productive way of discussing ionic liquid polarity. Again, the field is in its infancy, but some interesting results are beginning to appear. [Pg.100]

In this book we have decided to concentrate on purely synthetic applications of ionic liquids, just to keep the amount of material to a manageable level. FFowever, we think that synthetic and non-synthetic applications (and the people doing research in these areas) should not be treated separately for a number of reasons. Each area can profit from developments made in the other field, especially concerning the availability of physicochemical data and practical experience of development of technical processes using ionic liquids. In fact, in all production-scale chemical reactions some typically non-synthetic aspects (such as the heat capacity of the ionic liquid or product extraction from the ionic catalyst layer) have to be considered anyway. The most important reason for close collaboration by synthetic and non-synthetic scientists in the field of ionic liquid research is, however, the fact that in both areas an increase in the understanding of the ionic liquid material is the key factor for successful future development. [Pg.351]

We are far here from aiming to advise anybody about future research projects. The only message that we would like to communicate is that a chemical reaction is not necessarily surprising or important because it somehow works as well in an ionic liquid. One should look for those applications in which the specific properties of the ionic liquids may allow one to achieve something special that has not been possible in traditional solvents. If the reaction can be performed better (whatever you may mean by that) in another solvent, then use that solvent. In order to be able to make that judgement, it is imperative that we all include comparisons with molecular solvents in our studies, and not only those that we loiow are bad, but those that are the best alternatives. [Pg.353]

Electrons are not only charged, they also have a characteristic physicists call spin. Pairing two electrons by spin, which has two possible values, up or down, confers additional stability. Bei yllium (Be, atomic number 4) has two spin-paired electrons in its second shell that are easily given up in chemical reactions. Beryllium shares this characteristic with other elements in column two, the alkaline earth metals. These atoms also generally form ionic bonds. Boron... [Pg.806]

An example of the determination of activation enthalpies is shown in Figs. 11 and 12. A valuable indication for associating the correct minimum with the ionic conductivity is the migration effect of the minimum with the temperature (Fig. 11) and the linear dependence in the cr(T versus 1/T plot (Fig. 12). However, the linearity may be disturbed by phase transitions, crystallization processes, chemical reactions with the electrodes, or the influence of the electronic leads. [Pg.546]

The polyelectrolyte catalysis of chemical reactions involving ionic species has been the subject of extensive investigations since the pioneering studies of Morawetz et al. [12] and Ise et al. [13-17]. The catalytic effect or the ability of poly-electrolytes to enhance or retard reaction rates is mainly due to concentration or exclusion of either or both of the ionic reactants by the polyions added to the reaction systems. For example, the chemical reaction between ionic species carrying the same charge is enhanced in the presence of polyions carrying the opposite charge. This enhancement can be attributed to an increase in the local concentration... [Pg.52]


See other pages where Chemical reaction ionic is mentioned: [Pg.214]    [Pg.876]    [Pg.878]    [Pg.57]    [Pg.214]    [Pg.876]    [Pg.878]    [Pg.57]    [Pg.816]    [Pg.2795]    [Pg.2949]    [Pg.5]    [Pg.1290]    [Pg.172]    [Pg.443]    [Pg.443]    [Pg.411]    [Pg.27]    [Pg.122]    [Pg.492]    [Pg.142]    [Pg.157]    [Pg.19]    [Pg.849]    [Pg.892]    [Pg.26]    [Pg.181]    [Pg.270]    [Pg.281]    [Pg.299]    [Pg.351]    [Pg.352]    [Pg.158]    [Pg.543]   
See also in sourсe #XX -- [ Pg.732 , Pg.733 , Pg.734 , Pg.810 , Pg.811 , Pg.812 , Pg.813 , Pg.814 , Pg.815 , Pg.816 , Pg.817 , Pg.818 ]




SEARCH



Chemical equations aqueous ionic reactions

Chemical equilibrium ionic dissociation reaction from

Chemical reactions aqueous ionic

Effects of Ionic Liquids on Chemical Reactions

Ionic reactions

© 2024 chempedia.info