Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical hydrogen chloride

A chemical trap provides protection against various corrosive gases which attack the pump and pump oil as well as pollute the environment. These traps operate on the principle of chemical reactions between the exhaust gases and the chemical trapping reagents. The usual trapping materials are a mixture of activated charcoal and chemicals. Hydrogen chlorides in product gas can be neutralised by sodium or... [Pg.105]

Chemically, hydrogen chloride is relatively inactive and noncorrosive in the anhydrous state. However, it is readily absorbed by water to yield the highly corrosive hydrochloric (muriatic) acid. It also dissolves readily in alcohol and ether and reacts rapidly (violently, in some cases) with many organic substances. At high temperatures (3240°F or 1782°C and above), hydrogen chloride tends to dissociate into its constituent elements. [Pg.434]

The molecularity of an elementary step is given by the number of species that undergo a chemical change m that step Transfer of a proton from hydrogen chloride to tert butyl alcohol is bimolecular because two molecules [HCl and (CH3)3COH] undergo chemical change... [Pg.154]

As we have just seen the rate determining intermediate m the reaction of tert butyl alco hoi with hydrogen chloride is the carbocation (CH3)3C Convincing evidence from a variety of sources tells us that carbocations can exist but are relatively unstable When carbocations are involved m chemical reactions it is as reactive intermediates formed slowly m one step and consumed rapidly m the next one... [Pg.160]

The U.S. domestic commercial potassium nitrate of the 1990s contains 13.9% N, 44.1% I+O, 0—1.8% Cl, 0.1% acid insoluble, and 0.08% moisture. The material is manufactured by Vicksburg Chemical Co. using a process developed by Southwest Potash Division of AMAX Corp. This process uses highly concentrated nitric acid to catalyze the oxidation of by-product nitrosyl chloride and hydrogen chloride to the mote valuable chlorine (68). The much simplified overall reaction is... [Pg.232]

Hydrogen chloride is produced by the direct reaction of hydrogen and chlorine, by reaction of metal chlorides and acids, and as a by-product from many chemical manufacturing processes such as chlorinated hydrocarbons. [Pg.445]

Hydrogen Chloride as By-Product from Chemical Processes. Over 90% of the hydrogen chloride produced in the United States is a by-product from various chemical processes. The cmde HCl generated in these processes is generally contaminated with impurities such as unreacted chlorine, organics, chlorinated organics, and entrained catalyst particles. A wide variety of techniques are employed to treat these HCl streams to obtain either anhydrous HCl or hydrochloric acid. Some of the processes in which HCl is produced as a by-product are the manufacture of chlorofluorohydrocarbons, manufacture of aUphatic and aromatic hydrocarbons, production of high surface area siUca (qv), and the manufacture of phosphoric acid [7664-38-2] and esters of phosphoric acid (see Phosphoric acid and phosphates). [Pg.445]

Hydrogen chloride in air can also be a phytotoxicant (88). Tomatoes, sugar beets, and fmit trees of the Pmnus family are sensitive to HCl in air. Exposure of concentrated hydrochloric acid to the skin can cause chemical bums or dermatitis. Whereas the irritation is noticed readily, the acid can be water flushed from the exposed area. Copious use of miming water is the only recommended safety procedure for any external exposure. Ingestion is seldom a problem because hydrochloric acid is a normal constituent of the stomach juices. If significant quantities are accidentally swallowed, it can be neutrali2ed by antacids. [Pg.449]

Hydrogen chloride and the aqueous solution, muriatic acid, find appHcation in many industries. In general, anhydrous HCl is consumed for its chlorine value, whereas aqueous hydrochloric acid is often utilized as a nonoxidizing acid. The latter is used in metal cleaning operations, chemical manufacturing, petroleum well activation, and in the production of food and synthetic mbber. [Pg.450]

This reaction is catalyzed by hydrogen chloride and yields can be essentially quantitative when using either free phosphonic acid or its diesters. The flame retardant, Eyrol 6, produced by Akzo Chemicals, Inc. and used for rigid urethane foams, is synthesized as follows (24). [Pg.362]

Liquid-Ph se Processes. Prior to 1980, commercial hquid-phase processes were based primarily on an AIQ. catalyst. AIQ. systems have been developed since the 1930s by a number of companies, including Dow, BASF, Shell Chemical, Monsanto, SociStH Chimique des Charboimages, and Union Carbide—Badger. These processes generally involve ethyl chloride or occasionally hydrogen chloride as a catalyst promoter. Recycled alkylated ben2enes are combined with the AIQ. and ethyl chloride to form a separate catalyst—complex phase that is heavier than the hydrocarbon phase and can be separated and recycled. [Pg.48]

The process involving aHyl alcohol has not been iadustriaHy adopted because of the high production cost of this alcohol However, if the aHyl alcohol production cost can be markedly reduced, and also if the evaluated cost of hydrogen chloride, which is obtained as a by-product from the substitutive chlorination reaction, is cheap, then this process would have commercial potential. The high temperature propylene—chlorination process was started by SheH Chemical Corporation ia 1945 as an iadustrial process (1). The reaction conditions are a temperature of 500°C, residence time 2—3 s, pressure 1.5 MPa (218 psi), and an excess of propylene to chlorine. The yield of aHyl chloride is 75—80% and the main by-product is dichloropropane, which is obtained as a result of addition of chlorine. Other by-products iaclude monochioropropenes, dichloropropenes, 1,5-hexadiene. At low temperatures, the amount of... [Pg.76]

Usually best choice for desiccation of gases (<3% water) such as argon, helium, hydrogen, chlorine, hydrogen chloride, sulfur dioxide, ammonia, air, and chemical classes such as aliphatics, aromatics, halogenated compounds, oxygenated compounds (siUca gel, zeoHtes, activated alumina all alternatives some regenerable, some not). [Pg.458]

Dkect synthesis is the preparative method that ultimately accounts for most of the commercial siUcon hydride production. This is the synthesis of halosilanes by the dkect reaction of a halogen or haUde with siUcon metal, siUcon dioxide, siUcon carbide, or metal sihcide without an intervening chemical step or reagent. Trichlorosilane is produced by the reaction of hydrogen chloride and siUcon, ferrosiUcon, or calcium sihcide with or without a copper catalyst (82,83). Standard purity is produced in a static bed at 400—900°C. [Pg.23]

A.mmonium C/j/oride. Work on the distribution of ammonium chloride [12125-02-9] between the vapor andhquid phases (8) suggests that the Ray diagram is sometimes an oversimplification. In most steam systems, there is much more ammonia than any other impurity. In particular, there is more ammonia than hydrogen chloride. The volatiUty of ammonium chloride is therefore expressed by the following chemical equation ... [Pg.355]

Amines can also swell the polymer, lea ding to very rapid reactions. Pyridine, for example, would be a fairly good solvent for a VDC copolymer if it did not attack the polymer chemically. However, when pyridine is part of a solvent mixture that does not dissolve the polymer, pyridine does not penetrate into the polymer phase (108). Studies of single crystals indicate that pyridine removes hydrogen chloride only from the surface. Kinetic studies and product characterizations suggest that the reaction of two units in each chain-fold can easily take place further reaction is greatiy retarded either by the inabiUty of pyridine to diffuse into the crystal or by steric factors. [Pg.438]

Zirconium oxychloride is an important intermediate from which other zirconium chemicals are produced. It readily effloresces, and hydrates with 5—7 H2O are common. The salt caimot be dried to the anhydrous form, and decomposes to hydrogen chloride and zirconium oxide. [Pg.437]

In the United States the primary route for making calcium chloride is by the evaporation of underground brines (see Chemicals frombrines). Additional commercial material is available by the action of hydrochloric acid on limestone. Typically the hydrochloric acid is a by-product of some other commercial process and the conversion to calcium chloride is motivated by waste avoidance (see Hydrogen chloride). [Pg.414]

Acetjiene has found use as a feedstock for production of chlorinated solvents by reaction with hydrogen chloride or chlorine (6). However, because of safety concerns and the lower price of other feedstock hydrocarbons, very Htfle acetylene is used to produce chlorinated hydrocarbons in the United States (see Acetylene-derived chemicals). [Pg.506]

Chlorine atoms obtained from the dissociation of chlorine molecules by thermal, photochemical, or chemically initiated processes react with a methane molecule to form hydrogen chloride and a methyl-free radical. The methyl radical reacts with an undissociated chlorine molecule to give methyl chloride and a new chlorine radical necessary to continue the reaction. Other more highly chlorinated products are formed in a similar manner. Chain terrnination may proceed by way of several of the examples cited in equations 6, 7, and 8. The initial radical-producing catalytic process is inhibited by oxygen to an extent that only a few ppm of oxygen can drastically decrease the reaction rate. In some commercial processes, small amounts of air are dehberately added to inhibit chlorination beyond the monochloro stage. [Pg.508]


See other pages where Chemical hydrogen chloride is mentioned: [Pg.358]    [Pg.434]    [Pg.417]    [Pg.358]    [Pg.434]    [Pg.417]    [Pg.165]    [Pg.259]    [Pg.272]    [Pg.347]    [Pg.160]    [Pg.405]    [Pg.485]    [Pg.517]    [Pg.446]    [Pg.437]    [Pg.450]    [Pg.451]    [Pg.387]    [Pg.6]    [Pg.131]    [Pg.168]    [Pg.95]    [Pg.98]    [Pg.95]    [Pg.55]    [Pg.23]    [Pg.444]    [Pg.507]    [Pg.509]    [Pg.292]    [Pg.40]   
See also in sourсe #XX -- [ Pg.314 ]




SEARCH



Chemical hydrogenation

Chemical manufacturing, chemicals used hydrogen chloride

© 2024 chempedia.info