Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Characterization electron methods

Electron Microscopy. For morphological characterization electron microscopy was extensively used in conjunction with the osmium tetraoxide staining method. [Pg.404]

The last fundamental aspect characterizing PCM methods, i.e. their quantum mechanical formulation, is presented by Cammi for molecular systems in their ground electronic states and by Mennucci for electronically excited states. In both contributions, particular attention is devoted to the specific aspect characterizing PCM (and similar) approaches, namely the necessity to introduce an effective nonlinear Hamiltonian which describes the solute under the effect of the interactions with its environment and determines how these interactions affect the solute electronic wavefunction and properties. [Pg.631]

Double helical DNA is a water-soluble polymer that contains an electronically well-coupled stack of aromatic heterocyclic base pairs. This review describes efforts in our laboratory to characterize electron-transfer reactions between transition metal complexes bound by intercalation within the 7r-stack of DNA. Much information is available concerning the structure, synthesis, and methods of characterization of this polymer. Also, research in our laboratories has been directed toward describing the photophysical and photochemical properties of metal complexes bound to DNA. Using these metal complexes to probe the DNA 7r-way, we are now in a position to ask Is DNA a molecular wire ... [Pg.449]

Since carbides are extensively nsed in spatially restricted sizes (thin films, powder particles in cemented carbides), microanalytical techniqnes of local carbon analysis are of special interest for sample characterization. Electron probe microanalysis (EPMA) is the most snccessful method for the qnantitative analysis of carbon when the lateral resolntion needs not to be better than abont 2 xm. [Pg.590]

The radical anions have been likewise characterized by methods ranging from the various electrochemical techniques supplemented by EPR/ENDOR measurements to electron transmission spectroscopy. Radical anions can be conveniently generated in a matrix by Co y irradiation, e.g. in CD3OD, or in the liquid phase by potassium metal reduction in solvents such as hexamethylphosphoric triamide or dimethoxyethane. These ions have the n structure expected from calculations [14, 15, 25, 26]. [Pg.1006]

It thus appears that quantum chemical methods can successfully predict and characterize electronic mechanisms in substrate - enzyme interactions on the basis of the molecular reactivities of the separated entities, and from results of simulated interactions between molecular models - as shown by the following conclusions ... [Pg.174]

Except for the fullerenes, carbon nanotubes, nanohoms, and schwarzites, porous carbons are usually disordered materials, and cannot at present be completely characterized experimentally. Methods such as X-ray and neutron scattering and high-resolution transmission electron microscopy (HRTEM) give partial structural information, but are not yet able to provide a complete description of the atomic structure. Nevertheless, atomistic models of carbons are needed in order to interpret experimental characterization data (adsorption isotherms, heats of adsorption, etc.). They are also a necessary ingredient of any theory or molecular simulation for the prediction of the behavior of adsorbed phases within carbons - including diffusion, adsorption, heat effects, phase transitions, and chemical reactivity. [Pg.103]

Electrochemical Impedance Spectroscopy (ElS) is a method used to characterize electron-transfer reactions by perturbing the system in a sinusoidal manner over a wide range of frequencies. This method, which is very sensitive to the properties of the electrode interface, provides information regarding electron-transfer kinetics, diffusion of charged species, charging/discharging, and system conductance. [Pg.451]

NEXAFS is a synchrotron-based spectroscopic tool routinely used as a complementary technique with XPS for surface characterizations. This method probes the adsorption of X-rays by the excitation of core (K-shell) electrons into unoccupied electronic states near the ionization limit. Subsequent emission of Auger electrons results in the formation of an NEXAFS electron yield the observed spectmm. Because the source of Auger electrons can extend only up to 10 nm and the spectral peak positions and intensities are directly related to the nature of unoccupied electronic states, NEXAFS spectroscopy provides an important tool for studying stmctural and chemical features of various surface thin films and coatings (Hemraj-Benny et al., 2006 Hahner, 2006). [Pg.102]

The use of the so-called intervalence band of mixed valence compounds to characterize electron transfer has received considerable attention in the recent years. After the pioneering work of H.Taube and T.Meyer, it became clear that it was a convenient method to study the solvent influence on intramolecular electron transfer. The basic equation is always eq. [Pg.320]

We will, in the latter part of this discussion, focus only on those few methods that have been the most productive, with low-energy electron diffraction (FEED) receiving the most attention. Indeed, LEED has been the most successfiil surface stmctiiral method in two quite distinct ways. First, LEED has become an almost universal characterization... [Pg.1751]

A number of surface-sensitive spectroscopies rely only in part on photons. On the one hand, there are teclmiques where the sample is excited by electromagnetic radiation but where other particles ejected from the sample are used for the characterization of the surface (photons in electrons, ions or neutral atoms or moieties out). These include photoelectron spectroscopies (both x-ray- and UV-based) [89, 9Q and 91], photon stimulated desorption [92], and others. At the other end, a number of methods are based on a particles-in/photons-out set-up. These include inverse photoemission and ion- and electron-stimulated fluorescence [93, M]- All tirese teclmiques are discussed elsewhere in tliis encyclopaedia. [Pg.1795]

The final technique addressed in this chapter is the measurement of the surface work function, the energy required to remove an electron from a solid. This is one of the oldest surface characterization methods, and certainly the oldest carried out in vacuo since it was first measured by Millikan using the photoelectric effect [4]. The observation of this effect led to the proposal of the Einstein equation ... [Pg.1869]

Calculated transition structures may be very sensitive Lo the level of theory employed. Semi-empirical methods, since they are parametrized for energy miriimnm structures, may be less appropriate for transition state searching than ab initio methods are. Transition structures are norm ally characterized by weak partial" bonds, that is, being broken or formed. In these cases UHF calculations arc necessary, and sometimes even the inclusion of electron correlation effects. [Pg.17]

Analytical investigations may be undertaken to identify the presence of an ABS polymer, characterize the polymer, or identify nonpolymeric ingredients. Fourier transform infrared (ftir) spectroscopy is the method of choice to identify the presence of an ABS polymer and determine the acrylonitrile—butadiene—styrene ratio of the composite polymer (89,90). Confirmation of the presence of mbber domains is achieved by electron microscopy. Comparison with available physical property data serves to increase confidence in the identification or indicate the presence of unexpected stmctural features. Identification of ABS via pyrolysis gas chromatography (91) and dsc ((92) has also been reported. [Pg.204]

Particle Size. Wet sieve analyses are commonly used in the 20 )J.m (using microsieves) to 150 )J.m size range. Sizes in the 1—10 )J.m range are analyzed by light-transmission Hquid-phase sedimentation, laser beam diffraction, or potentiometric variation methods. Electron microscopy is the only rehable procedure for characterizing submicrometer particles. Scanning electron microscopy is useful for characterizing particle shape, and the relation of particle shape to slurry stabiUty. [Pg.349]

Materials characterization techniques, ie, atomic and molecular identification and analysis, ate discussed ia articles the tides of which, for the most part, are descriptive of the analytical method. For example, both iaftared (it) and near iaftared analysis (nira) are described ia Infrared and raman SPECTROSCOPY. Nucleai magaetic resoaance (nmr) and electron spia resonance (esr) are discussed ia Magnetic spin resonance. Ultraviolet (uv) and visible (vis), absorption and emission, as well as Raman spectroscopy, circular dichroism (cd), etc are discussed ia Spectroscopy (see also Chemiluminescence Electho-analytical techniques It unoassay Mass specthot thy Microscopy Microwave technology Plasma technology and X-ray technology). [Pg.393]


See other pages where Characterization electron methods is mentioned: [Pg.295]    [Pg.67]    [Pg.1478]    [Pg.15]    [Pg.376]    [Pg.106]    [Pg.59]    [Pg.64]    [Pg.774]    [Pg.170]    [Pg.342]    [Pg.113]    [Pg.979]    [Pg.789]    [Pg.142]    [Pg.476]    [Pg.1968]    [Pg.2189]    [Pg.2946]    [Pg.124]    [Pg.193]    [Pg.492]    [Pg.161]    [Pg.171]    [Pg.140]    [Pg.270]    [Pg.302]    [Pg.111]    [Pg.32]    [Pg.309]   
See also in sourсe #XX -- [ Pg.476 , Pg.477 , Pg.478 , Pg.479 , Pg.480 , Pg.481 , Pg.482 , Pg.483 , Pg.484 , Pg.485 , Pg.486 ]




SEARCH



Characterization methods

Electron Methods

Electron characterization

Electronic Characterization

Electronic characterization techniques experimental methods

Material characterization methods electron microscopy

© 2024 chempedia.info