Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Other Particles

Particles can come from many different sources  [Pg.519]

There are a large number of potential sources for particles to fall onto a wafer. Advanced tool design and proper selection of clean room technology can be very effective in reducing or eliminating this type of defect. In addition, it is desirable to eliminate manual intervention. The use of minienvironment around the tools and closed wafer-handling cassettes such as FOUP (front opening unified pod) are proven effective. These types of particles are more frequently seen in small clean rooms where wafers are handled manually. [Pg.519]


Electrons, protons and neutrons and all other particles that have s = are known as fennions. Other particles are restricted to s = 0 or 1 and are known as bosons. There are thus profound differences in the quantum-mechanical properties of fennions and bosons, which have important implications in fields ranging from statistical mechanics to spectroscopic selection mles. It can be shown that the spin quantum number S associated with an even number of fennions must be integral, while that for an odd number of them must be half-integral. The resulting composite particles behave collectively like bosons and fennions, respectively, so the wavefunction synnnetry properties associated with bosons can be relevant in chemical physics. One prominent example is the treatment of nuclei, which are typically considered as composite particles rather than interacting protons and neutrons. Nuclei with even atomic number tlierefore behave like individual bosons and those with odd atomic number as fennions, a distinction that plays an important role in rotational spectroscopy of polyatomic molecules. [Pg.30]

Between the limits of small and large r, the pair distribution function g(r) of a monatomic fluid is detemrined by the direct interaction between the two particles, and by the indirect interaction between the same two particles tlirough other particles. At low densities, it is only the direct interaction that operates through the Boltzmaim distribution and... [Pg.468]

The diffraction of low-energy electrons (and any other particles, like x-rays and neutrons) is governed by the translational syimnetry of the surface, i.e. the surface lattice. In particular, the directions of emergence of the diffracted beams are detemiined by conservation of the linear momentum parallel to the surface, bk,. Here k... [Pg.1767]

A number of surface-sensitive spectroscopies rely only in part on photons. On the one hand, there are teclmiques where the sample is excited by electromagnetic radiation but where other particles ejected from the sample are used for the characterization of the surface (photons in electrons, ions or neutral atoms or moieties out). These include photoelectron spectroscopies (both x-ray- and UV-based) [89, 9Q and 91], photon stimulated desorption [92], and others. At the other end, a number of methods are based on a particles-in/photons-out set-up. These include inverse photoemission and ion- and electron-stimulated fluorescence [93, M]- All tirese teclmiques are discussed elsewhere in tliis encyclopaedia. [Pg.1795]

Now the Lagrangean associated with the nuclear motion is not invariant under a local gauge transformation. Eor this to be the case, the Lagrangean needs to include also an interaction field. This field can be represented either as a vector field (actually a four-vector, familiar from electromagnetism), or as a tensorial, YM type field. Whatever the form of the field, there are always two parts to it. First, the field induced by the nuclear motion itself and second, an externally induced field, actually produced by some other particles E, R, which are not part of the original formalism. (At our convenience, we could include these and then these would be part of the extended coordinates r, R. The procedure would then result in the appearance of a potential interaction, but not having the field. ) At a first glance, the field (whether induced internally... [Pg.151]

In special cases (as in colloidal solutions) some particles can be considered as essential and other particles as irrelevant , but in most cases the essential space will itself consist of collective degrees of freedom. A reaction coordinate for a chemical reaction is an example where not a particle, but some function of the distance between atoms is considered. In a simulation of the permeability of a lipid bilayer membrane for water [132] the reaction coordinate was taken as the distance, in the direction perpendicular to the bilayer, between the center of mass of a water molecule and the center of mass of the rest of the system. In proteins (see below) a few collective degrees of freedom involving all atoms of the molecule, describe almost all the... [Pg.20]

It is helpful to distinguish three different types of problem to which Newton s laws of motion may be applied. In the simplest case, no force acts on each particle between collisions. From one collision to the next, the position of the particle thus changes by v,5f, where v, is the (constant) velocity and 6t is the time between collisions. In the second situation, the particle experiences a constant force between collisions. An example of this type of motion would be that of a charged particle moving in tr uniform electric field. In the third case, the force on the particle depends on its position relative to the other particles. Here the motion is often very difficult, if not impossible, to describe analytically, due to the coupled nature of the particles motions. [Pg.367]

Finite difference techniques are used to generate molecular dynamics trajectories with continuous potential models, which we will assume to be pairwise additive. The essential idea is that the integration is broken down into many small stages, each separated in time by a fixed time 6t. The total force on each particle in the configuration at a time t is calculated as the vector sum of its interactions with other particles. From the force we can determine the accelerations of the particles, which are then combined with the positions and velocities at a time t to calculate the positions and velocities at a time t + 6t. The force is assumed to be constant during the time step. The forces on the particles in their new positions are then determined, leading to new positions and velocities at time t - - 2St, and so on. [Pg.369]

Amount of substance mole mol Amount of substance which contains as many specified entities as there are atoms of car-bon-12 in exactly 0.012 kg of that nuclide. The elementary entities must be specified and may be atoms, molecules, ions, electrons, other particles, or specified groups of such particles. [Pg.77]

Ions impacting onto the cathode during a discharge cause secondary electrons and other charged and neutral species from the electrode material to be ejected. Some of these other particles derived... [Pg.36]

Gel-permeation media are extremely versatile and may be used for separation of particles such as vimses (Fig. 11) as well as proteins (34). Separations of proteins and other particles having sizes equivalent to a molecular weight of 40 x 10 are possible using the agar-based Sepharose-type gel. This particular gel has a limited temperature range for operation, however. It melts upon heating to 40°C (34). [Pg.53]

Hardness. The resistance of a fabricated mbber article to indentation, ie, hardness, is influenced by the amount and shape of its fillers. High loadings increase hardness. Fillers in the form of platelets or flakes, such as clays or mica, impart greater hardness to elastomers than other particle shapes at equivalent loadings. [Pg.369]

Particle Attrition. Distributor jets are a potential source of particle attrition. Particles are swept into the jet, accelerated to a high velocity, and smash into other particles as they leave. To reduce attrition at distributors, a shroud or larger-diameter pipe is often added concentric to the jet hole, as shown in Figure 15. The required length of the concentric shroud is given by the relation... [Pg.78]

Size. The precise determination of particle size, usually referred to as the particle diameter, can actually be made only for spherical particles. For any other particle shape, a precise determination is practically impossible and particle size represents an approximation only, based on an agreement between producer and consumer with respect to the testing methods (see Size measurement of particles). [Pg.179]

Pauli proposed that two particles were emitted, and Fermi called the second one a neutrino, V. The complete process therefore is n — p -H e 9. Owing to the low probabiHty of its interacting with other particles, the neutrino was not observed until 1959. Before the j3 -decay takes place there are no free leptons, so the conservation of leptons requires that there be a net of 2ero leptons afterward. Therefore, the associated neutrino is designated an antineutrino, 9-, that is, the emitted electron (lepton) and antineutrino (antilepton) cancel and give a net of 2ero leptons. [Pg.448]

In sohd—sohd separation, the soHds are separated iato fractions according to size, density, shape, or other particle property (see Size reduction). Sedimentation is also used for size separation, ie, classification of soHds (see Separation, size separation). One of the simplest ways to remove the coarse or dense soHds from a feed suspension is by sedimentation. Successive decantation ia a batch system produces closely controUed size fractions of the product. Generally, however, particle classification by sedimentation does not give sharp separation (see Size MEASUREMENT OF PARTICLES). [Pg.316]

Wear. Ceramics generally exhibit excellent wear properties. Wear is deterrnined by a ceramic s friction and adhesion behavior, and occurs by two mechanisms adhesive wear and abrasive wear (43). Adhesive wear occurs when interfacial adhesion produces a localized Kj when the body on one side of the interface is moved relative to the other. If the strength of either of the materials is lower than the interfacial shear strength, fracture occurs. Lubricants (see Lubricants and lubrication) minimize adhesion between adj acent surfaces by providing an interlayer that shears easily. Abrasive wear occurs when one material is softer than the other. Particles originating in the harder material are introduced into the interface between the two materials and plow into and remove material from the softer material (52). Hard particles from extrinsic sources can also cause abrasive wear, and wear may occur in both of the materials depending on the hardness of the particle. [Pg.326]

Surface Area and Permeability or Porosity. Gas or solute adsorption is typicaUy used to evaluate surface area (74,75), and mercury porosimetry is used, ia coajuactioa with at least oae other particle-size analysis, eg, electron microscopy, to assess permeabUity (76). Experimental techniques and theoretical models have been developed to elucidate the nature and quantity of pores (74,77). These iaclude the kinetic approach to gas adsorptioa of Bmaauer, Emmett, and TeUer (78), known as the BET method and which is based on Langmuir s adsorption model (79), the potential theory of Polanyi (25,80) for gas adsorption, the experimental aspects of solute adsorption (25,81), and the principles of mercury porosimetry, based on the Young-Duprn expression (24,25). [Pg.395]


See other pages where Other Particles is mentioned: [Pg.24]    [Pg.469]    [Pg.471]    [Pg.669]    [Pg.669]    [Pg.678]    [Pg.2800]    [Pg.99]    [Pg.153]    [Pg.460]    [Pg.464]    [Pg.348]    [Pg.369]    [Pg.404]    [Pg.418]    [Pg.595]    [Pg.367]    [Pg.98]    [Pg.104]    [Pg.110]    [Pg.1]    [Pg.394]    [Pg.34]    [Pg.34]    [Pg.187]    [Pg.419]    [Pg.398]    [Pg.174]    [Pg.433]    [Pg.121]    [Pg.245]    [Pg.335]   


SEARCH



© 2024 chempedia.info