Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Characterization chemical composition

The key elements that characterize chemical composition of the catalyst rre alumina, sodium, metals, and carbon on the regenerated catalyst. [Pg.107]

Scheme 1.7 Main analytical methods for characterizing chemical composition in layers and bulk... Scheme 1.7 Main analytical methods for characterizing chemical composition in layers and bulk...
Nuclear magnetic resonance (NMR) is used for a variety of purposes in this area, most of which parallel those used to characterize small-molecule systems.17,24 In addition to II and 13C NMR, 29Si NMR is very frequently employed. These methods are used to characterize chemical composition, structural features, and conformational preferences. They are also used to characterize hybrid inorganic composites, and silica-type ceramics, in general. [Pg.160]

The aim of the present paper is double. Firstly, we wish to question more precisely the role of TEA+ ions in competition with the Na+ cations and possibly in close relation with other synthesis parameters such as the silica source, or the alumina content, by comparing a series of other physicochemical characterizations(chemical composition, nature of the occluded organics, void volume...) of zeolites ZSM-20 and Beta. In a second step, we conduct a more in depth investigation of the whole synthesis conditions and their modification in order to propose selective preparation routes for both zeolites and to possibly define further favorable conditions for the formation of other potential open phases. [Pg.520]

Analysis of Structural Unit-SiZG. The strength of vibrational spectroscopy lies in its ability to characterize chemical composition and localized structure of polymers. The observation of the intense longitudinal acoustic mode (LAM) in the extremely low frequency region (<50 cm ) of the Raman spectra of semicrystalline polymers provides a very different morphological tool for measurement of structural subunits in the order of several hundreds of angstroms. [Pg.8782]

In order to characterize the behavior of motor fuels or their components with regard to knocking resistance but without involving chemical composition criteria which are complex and not easy to quantify, the traditional method that has been universally employed for more than 50 years consists of introducing the concept of octane number. [Pg.195]

Apart from chemical composition, an important variable in the description of emulsions is the volume fraction, outer phase. For spherical droplets, of radius a, the volume fraction is given by the number density, n, times the spherical volume, 0 = Ava nl2>. It is easy to show that the maximum packing fraction of spheres is 0 = 0.74 (see Problem XIV-2). Many physical properties of emulsions can be characterized by their volume fraction. The viscosity of a dilute suspension of rigid spheres is an example where the Einstein limiting law is [2]... [Pg.501]

The presented examples clearly demonstrate tliat a combination of several different teclmiques is urgently recommended for a complete characterization of tire chemical composition and tire atomic stmcture of electrode surfaces and a reliable interiDretation of tire related results. Stmcture sensitive metliods should be combined witli spectroscopic and electrochemical teclmiques. Besides in situ techniques such as SXS, XAS and STM or AFM, ex situ vacuum teclmiques have proven tlieir significance for tlie investigation of tlie electrode/electrolyte interface. [Pg.2755]

Analytical chemistry is often described as the area of chemistry responsible for characterizing the composition of matter, both qualitatively (what is present) and quantitatively (how much is present). This description is misleading. After all, almost all chemists routinely make qualitative or quantitative measurements. The argument has been made that analytical chemistry is not a separate branch of chemistry, but simply the application of chemical knowledge. In fact, you probably have performed quantitative and qualitative analyses in other chemistry courses. For example, many introductory courses in chemistry include qualitative schemes for identifying inorganic ions and quantitative analyses involving titrations. [Pg.2]

There are several possible reasons why a scientific study of an art work may be desirable. An obvious one is in cases where the authenticity of an object is doubted on styHstic grounds, but no unanimous opinion exists. The scientist can identify the materials, analy2e the chemical composition, and then investigate whether these correspond to what has been found in comparable objects of unquestioned provenance. If the sources for the materials can be characterized, eg, through trace element composition or stmcture, it may be possible to determine whether the sources involved in the procurement of the materials for comparable objects with known provenance are the same. Comparative examination of the technological processes involved in the manufacture allows for conclusions as to whether the object was made using techniques actually available to the people who supposedly created it. Additionally, dating techniques may lead to the estabUshment of the date of manufacture. [Pg.416]

As more complex multicomponent blends are being developed for commercial appHcations, new approaches are needed for morphology characterization. Often, the use of RuO staining is effective, as it is sensitive to small variations in the chemical composition of the component polymers. For instance PS, PC, and styrene—ethylene/butylene—styrene block copolymers (SEES) are readily stained, SAN is stained to a lesser degree, and PET and nylons are not stained (158,225—228). [Pg.418]

Evidence of the appHcation of computers and expert systems to instmmental data interpretation is found in the new discipline of chemometrics (qv) where the relationship between data and information sought is explored as a problem of mathematics and statistics (7—10). One of the most useful insights provided by chemometrics is the realization that a cluster of measurements of quantities only remotely related to the actual information sought can be used in combination to determine the information desired by inference. Thus, for example, a combination of viscosity, boiling point, and specific gravity data can be used to a characterize the chemical composition of a mixture of solvents (11). The complexity of such a procedure is accommodated by performing a multivariate data analysis. [Pg.394]

Characterization. Ceramic bodies are characterized by density, mass, and physical dimensions. Other common techniques employed in characterizing include x-ray diffraction (XRD) and electron or petrographic microscopy to determine crystal species, stmcture, and size (100). Microscopy (qv) can be used to determine chemical constitution, crystal morphology, and pore size and morphology as well. Mercury porosknetry and gas adsorption are used to characterize pore size, pore size distribution, and surface area (100). A variety of techniques can be employed to characterize bulk chemical composition and the physical characteristics of a powder (100,101). [Pg.314]

The extent of chemical and physical interactions among the components of a dmg dehvery system are characterized. Changes in chemical composition can be detected by analytical methodologies. The dmg formulation and the occurrence of byproducts need to be identified. Physical changes, such as swelling and delamination, also need to be identified so that corrective actions can be taken. [Pg.234]

Raman spectroscopy is primarily a structural characterization tool. The spectrum is more sensitive to the lengths, streng ths, and arrangement of bonds in a material than it is to the chemical composition. The Raman spectmm of crystals likewise responds more to details of defects and disorder than to trace impurities and related chemical imperfections. [Pg.429]

SALI is a reladvely new surface technique that delivers a quantitative and sensitive measure of the chemical composition of solid surfaces. Its major advantage, compared to its parent technique SIMS, is that quantitative elemental and molecular informadon can be obtained. SPI offers exciting possibilities for the analytical characterization of the surfaces of polymers and biomaterials in which chemical differ-endation could be based solely on the characteristic SALE spectra. [Pg.568]

Airborne particulate matter, which includes dust, dirt, soot, smoke, and liquid droplets emitted into the air, is small enough to be suspended in the atmosphere. Airborne particulate matter may be a complex mixture of organic and inorganic substances. They can be characterized by their physical attributes, which influence their transport and deposition, and their chemical composition, which influences their effect on health. The physical attributes of airborne particulates include mass concentration and size distribution. Ambient levels of mass concentration are measured in micrograms per cubic meter (mg/m ) size attributes are usually measured in aerodynamic diameter. Particulate matter (PM) exceeding 2.5 microns (/i) in aerodynamic diameter is generally defined as coarse particles, while particles smaller than 2.5 mm (PMj,) are called fine particles. [Pg.15]

The characterization of PIC (products of incomplete combustion) from the combustion of wood treated with pentachlorophenol (penta) is more widely documented in the open literature than creosote alone. However, both products are similar in chemical composition and likely result in comparable forms and concentrations of PIC. Literature reported studies on the combustion of these chemicals and wood treated by them, and the PIC generated are based upon optimal conditions. Optimal conditions are defined as those in which the fuel burns at the designed heat release rate with nominally 160% excess air and a low level (< 100 ppm) of carbon monoxide (CO) emissions in combustion (flue) gases. [Pg.335]

Solid particles have a distinct form, which can strongly affect their appearance, product quality and processing behaviour. Thus, in addition to chemical composition, particulate solids have to be additionally characterized by particle size and shape. Furthermore, particles can be generated at any point within the process. For example, nucleation occurs within a crystallization process and large particles are broken down to numerous smaller ones in a comminution process or within a drier. [Pg.7]

Being sensitive to the chemical composition of the outermost layers of the surface, contact angle measurement is widely used for characterizing polymer surfaces. Surface characterization for polymers using contact angle measurement and XPS will now be described in detail, as these are the most widely used methods. [Pg.518]

It is basically a fractionation process that depends not only on molecular size, but also on chemical composition, stereo-configuration, branching, and crosslinking. For multicomponent systems, fractionation with different ion polymolecularity, chemical heterogeneity and sequence length distribution, solubility or elution fractionation is of primary importance. Therefore, gel permeation chromatography or size exclusion chromatography is used as an important tool for the characterization of PBAs. [Pg.656]

Synthesis and mechanical and morphological characterization of (AB)n, ABA and BAB type copolymers of m-phenylene-isophthalamide and polydimethylsiloxane have been reported241 242>. The effect of copolymer type, chemical composition and segment molecular weights on phase separation and the solution behavior of these systems have also been discussed. [Pg.39]

In the mid-latitude region depicted in Fig. 7-5, the motion is characterized by large-scale eddy transport." Here the "eddies" are recognizable as ordinary high- and low-pressure weather systems, typically about 10 km in horizontal dimension. These eddies actually mix air from the polar regions with air from nearer the equator. At times, air parcels with different water content, different chemical composition and different thermodynamic characteristics are brought into contact. When cold dry air is mixed with warm moist air, clouds and precipitation occur. A frontal system is said to exist. Two such frontal systems are depicted in Fig. 7-5 (heavy lines in the midwest and southeast). [Pg.140]


See other pages where Characterization chemical composition is mentioned: [Pg.320]    [Pg.231]    [Pg.44]    [Pg.320]    [Pg.231]    [Pg.44]    [Pg.483]    [Pg.1947]    [Pg.2398]    [Pg.2788]    [Pg.276]    [Pg.358]    [Pg.18]    [Pg.333]    [Pg.443]    [Pg.11]    [Pg.105]    [Pg.379]    [Pg.144]    [Pg.193]    [Pg.211]    [Pg.414]    [Pg.95]    [Pg.57]    [Pg.418]    [Pg.45]    [Pg.133]    [Pg.49]   
See also in sourсe #XX -- [ Pg.387 , Pg.426 ]




SEARCH



Characterization compositional

Chemical characterization

Chemical composition distribution, direct characterization

Composite characterization

Elastomers, structure characterization chemical composition

© 2024 chempedia.info