Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic porous materials

Catalytic gas-phase reactions play an important role in many bulk chemical processes, such as in the production of methanol, ammonia, sulfuric acid, and nitric acid. In most processes, the effective area of the catalyst is critically important. Since these reactions take place at surfaces through processes of adsorption and desorption, any alteration of surface area naturally causes a change in the rate of reaction. Industrial catalysts are usually supported on porous materials, since this results in a much larger active area per unit of reactor volume. [Pg.47]

The components in catalysts called promoters lack significant catalytic activity tliemselves, but tliey improve a catalyst by making it more active, selective, or stable. A chemical promoter is used in minute amounts (e.g., parts per million) and affects tlie chemistry of tlie catalysis by influencing or being part of tlie catalytic sites. A textural (structural) promoter, on tlie otlier hand, is used in massive amounts and usually plays a role such as stabilization of tlie catalyst, for instance, by reducing tlie tendency of tlie porous material to collapse or sinter and lose internal surface area, which is a mechanism of deactivation. [Pg.2702]

This review deals with the chemistry and coordination complexes of isoelectronic analogues of common oxo-anions of phosphorus such as PO3, POl", RPOl" and R2POy. The article begins with a discussion of homoleptic systems in which all of the 0x0 ligands are replaced by imido (NR) groups. This is followed by an account of heteroleptic phosphorus-centered anions, including [RN(E)P(/<-NR )2P(E)NR]2-, [EP(NR)3]3-, [RP(E)(NR)2] and [R2P(E)(NR )] (E=0,S, Se, Te). The emphasis is on the wide variety of coordination modes exhibited by these poly-dentate ligands, which have both hard (NR) and soft (S, Se or Te) centers. Possible applications of their metal complexes include new catalytic systems, coordination polymers with unique properties, and novel porous materials. [Pg.143]

A further consideration in porous materials is the shape of the pores. Molecules have to diffuse through the pores to feel the effect of the catalytic groups which exist in the interior and, after reaction, the reaction products must diffuse out. These diffusion processes can often be the slowest step in the reaction sequence, and thus pores which allow rapid diffusion will provide the most active catalysts. It is another feature of the MTSs that they have quite straight, cylindrical pores - ideal for the rapid diffusion of molecules. [Pg.67]

By coprecipitating the catalytically active component and the support to give a mixture that is subsequently dried, calcined (heated in air), and reduced to yield a porous material with a high surface area. This procedure is followed when materials are cheap and obtaining the optimum catalytic activity per unit volume of catalyst is the main consideration. [Pg.195]

The development of catalysts for the oxidation of organic compounds by air under ambient conditions is of both academic and practical importance (1). Formaldehyde is an important intermediate in synthetic chemistry as well as one of the major pollutants in the human environment (2). While high temperature (> 120 °C) catalytic oxidations are well known (3), low temperature aerobic oxidations under mild conditions have yet to be reported. Polyoxometalates (POMs) are attractive oxidation catalysts because these extensively modifiable metal oxide-like structures have high thermal and hydrolytic stability, tunable acid and redox properties, solubility in various media, etc. (4). Moreover, they can be deposited on fabrics and porous materials to render these materials catalytically decontaminating (5). Here we report the aerobic oxidation of formaldehyde in water under mild conditions (20-40 °C, 1 atm of air or 02) in the presence of Ce-substituted POMs (Ce-POMs). [Pg.429]

Nowadays synthesis of mesoporous materials with zeolite character has been suggested to overcome the problems of week catalytic activity and poor hydrothermal stability of highly silicious materials. So different approaches for the synthesis of this new generation of bimodal porous materials have been described in the literature like dealumination [4] or desilication [5], use of various carbon forms as templates like carbon black, carbon aerosols, mesoporous carbon or carbon replicas [6] have been applied. These mesoporous zeolites potentially improve the efficiency of zeolitic catalysis via increase in external surface area, accessibility of large molecules due to the mesoporosity and hydrothermal stability due to zeolitic crystalline walls. During past few years various research groups emphasized the importance of the synthesis of siliceous materials with micro- and mesoporosity [7-9]. Microwave synthesis had... [Pg.433]

In this chapter, we demonstrate the potential of such agents as catalysts/promoters in key steps for the derivatization of sugars. The most significant catalytic approaches in carbohydrate chemistry that use aluminosilicate porous materials, namely zeolites and montmorillonite clays, are reviewed and discussed. Silica gel is a porous solid silicate that has also been used for heterogeneous catalysis of organic reactions in general. We include here its usefulness as promoter and reagent support for the reactions under consideration. [Pg.30]

X-ray photoelectron spectroscopy is indeed quite informative, but requires the use of expensive instrumentation. Also, the detection of photoelectrons requires the use of ultrahigh vacuum, and therefore can mostly be used for ex situ characterization of catalytic samples (although new designs are now available for in situ studies [146,147]). Finally, XPS probes the upper 10 to 100 A of the solid sample, and is only sensitive to the outer surfaces of the catalysts. This may yield misleading results when analyzing porous materials. [Pg.21]

The reason for the high selectivity of zeohte catalysts is the fact that the catalytic reaction typically takes place inside the pore systems of the zeohtes. The selectivity in zeohte catalysis is therefore closely associated to the unique pore properties of zeohtes. Their micropores have a defined pore diameter, which is different from all other porous materials showing generally a more or less broad pore size distribution. Therefore, minute differences in the sizes of molecules are sufficient to exclude one molecule and allow access of another one that is just a little smaller to the pore system. The high selectivity of zeolite catalysts can be explained by three major effects [14] reactant selectivity, product selectivity, and selectivity owing to restricted size of a transition state (see Figure 4.11). [Pg.107]

While modeling the structure and properties of porous materials one usually is interested in structural properties of a desirable hierarchical level. For example, for chemical properties the molecular structure is major, and the specific adsorption and catalytic properties are guided by the structure and composition of particle surface. Diffusion permeability is determined by the supramolecular... [Pg.299]

Transition metal complexes encapsulated in the cavities of zeolites and meso-porous materials exhibit enhanced catalytic activity, compared to their neat analogs. " We had earlier found that Cu(II)-acetate exhibited enhanced regiose-lective orf/zo-hydroxylation of phenols using atmospheric oxygen as the oxidant on encapsulation in molecular sieves Y, MCM-22 or VPI-5. Rao et al. had also found a similar enhancement for encapsulation in Al-MCM-48. [Pg.208]

Abstract The principle of catalytic SILP materials involves surface modification of a porous solid material by an ionic liquid coating. Ionic liquids are salts with melting points below 100 °C, generally characterized by extremely low volatilities. In the examples described in this paper, the ionic liquid coating contains a homogeneously dissolved Rh-complex and constitutes a uniform, thin film, which itself displays the catalytic reactivity in the system. Continuous fixed-bed reactor technology has been applied successfully to demonstrate the feasibility of catalytic SILP materials for propene hydroformylation and methanol carbonylation. [Pg.149]

Porous materials such as organic zeolites discussed in Section 8.4 are vigorously studied since they often exhibit catalytic activity [122]. An interesting type of zeolite materials is obtained by tucking chiral amines inside pores of a commercially available zeolite. Such an approach allowed Ramamurthy s group to enhance stereoselectivity of a photochemical reaction [122b]. [Pg.157]

Karadimitra, K., Lorentzou, S., Agrafiotis C., and Konstandopoulos A. G. Modeling of Catalytic Particle Synthesis via Spray Pyrolysis In-Situ Deposition on Porous Materials . PARTEC 2004, International Conference for Particle Technology, Nuremberg, Germany, 2004, March 16-18. [Pg.268]

To understand heterogeneous catalysis it is necessary to characterize the surface of the catalyst, where reactants bond and chemical transformations subsequently take place. The activity of a solid catalyst scales directly with the number of exposed active sites on the surface, and the activity is optimized by dispersing the active material as nanometer-sized particles onto highly porous supports with surface areas often in excess of 500m /g. When the dimensions of the catalytic material become sufficiently small, the properties become size-dependent, and it is often insufficient to model a catalytically active material from its macroscopic properties. The structural complexity of the materials, combined with the high temperatures and pressures of catalysis, may limit the possibilities for detailed structural characterization of real catalysts. [Pg.98]

Since the acidity of porous materials is important in catalytic applications, a characterization of this interesting property is carried out by adsorption of the probe molecule acetonitrile CD3CN. Acetonitrile-d3, a weak base, can be applied to investigate Bronsted and Lewis acid sites and to discriminate between both types of sites [9,10], The analysis is based on the study of the C=N stretching region by infra-red spectroscopy. [Pg.415]

CARBON SKELETON. The technique of precolumn catalytic hydrogenation can be applied to reduce certain unsaturated compounds to their parent hydrocarbons. Compounds analyzed by this technique include esters, ketones, aldehydes, amines, epoxides, nitriles, halides, sulfides, and fatty acids. Fatty acids usually give a hydrocarbon that, is the next lower homolag than the parent acid. For most systems utilizing hydrogenation, hydrogen is also used as the carrier gas. Usually 1% palladium or platinum on a non-adsorptive porous support such as AW-Chromosorb P is used as the catalytic packing material. [Pg.162]

While catalytic HDM results in a desirable, nearly metal-free product, the catalyst in the reactor is laden with metal sulfide deposits that eventually result in deactivation. Loss of catalyst activity is attributed to both the physical obstruction of the catalyst pellets pores by deposits and to the chemical contamination of the active catalytic sites by deposits. The radial metal deposit distribution in catalyst pellets is easily observed and understood in terms of the classic theory of diffusion and reaction in porous media. Application of the theory for the design and development of HDM and HDS catalysts has proved useful. Novel concepts and approaches to upgrading metal-laden heavy residua will require more information. However, detailed examination of the chemical and physical structure of the metal deposits is not possible because of current analytical limitations for microscopically complex and heterogeneous materials. Similarly, experimental methods that reveal the complexities of the fine structure of porous materials and theoretical methods to describe them are not yet... [Pg.250]

The following review is concerned with the synthetic and structural chemistry of molecular alumo-siloxanes, which combine in a molecular entity the elements aluminum and silicon connected by oxygen. They may be regarded as molecular counterparts of alumo-silicates, which have attracted considerable attention owing to their solid-state cage structures (see for example zeolites).1 3 Numerous applications have been found for these solid-state materials for instance the holes and pores can be used in different separation techniques.4,5 Recently the channel and pore structures of zeolites and other porous materials have been used as templates for nano-structured materials and for catalytical purposes.6 9... [Pg.49]


See other pages where Catalytic porous materials is mentioned: [Pg.262]    [Pg.330]    [Pg.158]    [Pg.32]    [Pg.45]    [Pg.195]    [Pg.2]    [Pg.9]    [Pg.93]    [Pg.272]    [Pg.30]    [Pg.83]    [Pg.561]    [Pg.563]    [Pg.194]    [Pg.156]    [Pg.265]    [Pg.18]    [Pg.112]    [Pg.146]    [Pg.165]    [Pg.275]    [Pg.44]    [Pg.277]    [Pg.57]    [Pg.195]    [Pg.435]    [Pg.222]    [Pg.262]    [Pg.271]   
See also in sourсe #XX -- [ Pg.390 ]




SEARCH



CATALYTIC MATERIALS

© 2024 chempedia.info