Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalysts shape selective type

Shape selective catalysts, such as ZeoHtes of the H-ZSM-5 type, are capable of directing alkyl groups preferentially to the para position (18). The ratio of the catalyst to the substrate also plays a role ia controlling the regiochemistry of the alkylations. For example, selective alkylation of anilines at the para position is achieved usiag alkylatiag ageats and AlCl ia equimolar ratio (19). [Pg.552]

The important property of ZSM-5 and similar zeolites is the intercrystalline catalyst sites, which allow one type of reactant molecule to diffuse, while denying diffusion to others. This property, which is based on the shape and size of the reactant molecules as well as the pore sizes of the catalyst, is called shape selectivity. Chen and Garwood document investigations regarding the various aspects of ZSM-5 shape selectivity in relation to its intercrystalline and pore structure. [Pg.163]

Ad(ii) On catalysts with pores and cavities of molecular dimensions, exemplified by mordenite and ZSM-5, shape selectivity provides constraints of the transition state on the S 2 path in either preventing axial attack as that of methyl oxonium by isobutanol in mordenite that has to "turn the comer" when switching the direction of fli t through the main channel to the perpendicular attack of methyl oxonium in the side-pocket, or singling out a selective approach from several possible ones as in the chiral inversion in ethanol/2-pentanol coupling in HZSM-5 (14). Both of these types of spatial constraints result in superior selectivities to similar reactions in solutions. [Pg.609]

In view of catalytic potential applications, there is a need for a convenient means of characterization of the porosity of new catalyst materials in order to quickly target the potential industrial catalytic applications of the studied catalysts. The use of model test reactions is a characterization tool of first choice, since this method has been very successful with zeolites where it precisely reflects shape-selectivity effects imposed by the porous structure of tested materials. Adsorption of probe molecules is another attractive approach. Both types of approaches will be presented in this work. The methodology developed in this work on zeolites Beta, USY and silica-alumina may be appropriate for determination of accessible mesoporosity in other types of dealuminated zeolites as well as in hierarchical materials presenting combinations of various types of pores. [Pg.217]

Fischer-Tropsch synthesis could be "tailored by the use of iron, cobalt and ruthenium carbonyl complexes deposited on faujasite Y-type zeolite as starting materials for the preparation of catalysts. Short chain hydrocarbons, i.e. in the C-j-Cq range are obtained. It appears that the formation and the stabilization of small metallic aggregates into the zeolite supercage are the prerequisite to induce a chain length limitation in the hydrocondensation of carbon monoxide. However, the control of this selectivity through either a definite particle size of the metal or a shape selectivity of the zeolite is still a matter of speculation. Further work is needed to solve this dilemna. [Pg.201]

Several metal oxides could be used as acid catalysts, although zeolites and zeo-types are mainly preferred as an alternative to liquid acids (Figure 13.1). This is a consequence of the possibility of tuning the acidity of microporous materials as well as the shape selectivity observed with zeolites that have favored their use in new catalytic processes. However, a solid with similar or higher acid strength than 100% sulfuric acid (the so-called superacid materials) could be preferred in some processes. From these solid catalysts, nation, heteropolyoxometalates, or sulfated metal oxides have been extensively studied in the last ten years (Figure 13.2). Their so-called superacid character has favored their use in a large number of acid reactions alkane isomerization, alkylation of isobutene, or aromatic hydrocarbons with olefins, acylation, nitrations, and so forth. [Pg.253]

Isomerization of olefins or paraffins is an acid-catalyzed reaction that can be carried out with any number of strong acids, including mineral acids, sulfated metal oxides, zeolites and precious metal-modified catalysts [10]. Often the catalyst contains both an acid function and a metal function. The two most prevalent catalysts are Pt/chlorided AI2O3 and Pt-loaded zeolites. The power of zeoHtes in this reaction type is due to their shape selectivity [11] and decreased sensitivity to water or other oxygenates versus AICI3. It is possible to control the selectivity of the reaction to the desired product by using a zeoHte with the proper characteristics [12]. These reactions are covered in more detail in Chapter 14. [Pg.356]

A good example for reactant shape selectivity includes the use of catalysts with ERI framework type for selective cracking of linear alkanes, while excluding branched alkanes with relatively large kinetic diameters from the active sites within the narrow 8-MR zeolite channels [61, 62]. Here molecular sieving occurs both because of the low Henry coefficient for branched alkanes and because of the intracrystalline diffusion limitations that develop from slow diffusivities for branched alkane feed molecules. [Pg.435]

The selective oxidations of the terminal positions of -alkanes are an example of substrate-shape selectivity. Product-shape selectivity has been used to enhance the selectivity of the type IIaRH oxidation of cyclohexane [66-68], For example, oxidation of cyclohexane at 373 K for 8 hr using FeAlPO-31 (pore aperture 5.4 A) as a catalyst resulted in 2.5% conversion to a mixture which contained 55.3% of adipic acid and 37.3% of a mixture of cyclohexanol and cyclohexanone [68]. In contrast, oxidation under identical conditions using FeAlPO-5 (pore aperture 7.3 A) resulted in only 9.2% of adipic acid and 89.5%... [Pg.300]

Selective hydroxylation of phenol with hydrogen peroxide was reported on acid zeolite catalysts [91-92]. Peroxonium ions, formed by H2O2 protonation, are the oxidizing species. When the reaction is carried out on a faujasite catalyst, a mixture of hydroxybenzenes and tars is obtained [91]. In the presence of H-ZSM-5 on the other hand, no tar formation was mentioned (which does not necessarily mean that it was absent) and p-selectivities close to 100% were reported for the hydroxylation [92]. These superior selectivities reflect the shape selective properties of ZSM type zeolites. [Pg.245]

The catalytic isomerization of 1-methylnaphthalene and all lation of 2-methylnaphtha-lene with methanol were studied at ambient pressure in a flow-type fixed bed reactor. Acid zeolites with a Spaciousness Index between ca. 2 and 16 were found to be excellent isomerization catalysts which completely suppress the undesired disproportionation into nwhthalene and dimethylnaphthalenes due to transition state shape selectivity. Examples are HZSM-12, H-EU-1 and H-Beta. Optimum catalysts for the shape selective methylation of 2-methylnaphthalene are HZSM-5 and HZSM-li. All experimental finding concerning this reaction can be readily accounted for by conventional product shape selectivity combined with coke selectivation, so there is no need for invoking shape selectivity effects at the external surface or "nest effects", at variance with recent pubhcations from other groups. [Pg.291]

The advantages of shape selective catalysis are alreacfy ejq)loited in a number of industrial processes [11-14]. Astonishingly, virtually all these processes rely on a single structural type of catalyst, viz. zeolite ZSM-5 in various modifications, or its titanium containing analogue TS-1 [15]. It is, moreover, noteworthy that many of these processes convert and/or produce mononuclear aromatic compounds. It is not surprising, therefore, that a vast scientific literature exists on shape selective reactions of benzene derivatives in zeolite ZSM-5. [Pg.291]

Derouane and Gabelica16 proposed molecular traffic control as another type of shape-selectivity that could occur in zeolites having more than one type of intersecting pore system. Here, reactant molecules may preferentially enter into the catalyst through one pore system while the products diffuse out through the other, thereby minimizing counter diffusion and increasing the reaction rate. [Pg.57]

Different catalysts bring about different types of isomerization of hydrocarbons. Acids are the best known and most important catalysts bringing about isomerization through a carbocationic process. Brpnsted and Lewis acids, acidic solids, and superacids are used in different applications. Base-catalyzed isomerizations of hydrocarbons are less frequent, with mainly alkenes undergoing such transformations. Acetylenes and allenes are also interconverted in base-catalyzed reactions. Metals with dehydrogenating-hydrogenating activity usually supported on oxides are also used to bring about isomerizations. Zeolites with shape-selective characteristics... [Pg.160]

Shape selective reactions are typically carried out over zeolites, molecular sieves and other porous materials. There are three major classifications of shape selectivity including (1) reactant shape selectivity where reactants of sizes less than the pore size of the support are allowed to enter the pores to react over active sites, (2) product shape selectivity where products of sizes smaller than the pore dimensions can leave the catalyst and (3) transition state shape selectivity where sizes of pores can influence the types of transition states that may form. Other materials like porphyrins, vesicles, micelles, cryptands and cage complexes have been shown to control product selectivities by shape selective processes. [Pg.16]

The types of shape selective catalysis that occur in zeolites and molecular sieves are reviewed. Specifically, primary and secondary acid catalyzed shape selectivity and encapsulated metal ion and zero valent metal particle catalyzed shape selectivity are discussed. Future trends in shape selective catalysis, such as the use of large pore zeolites and electro- and photo-chemically driven reactions, are outlined. Finally, the possibility of using zeolites as chiral shape selective catalysts is discussed. [Pg.207]


See other pages where Catalysts shape selective type is mentioned: [Pg.246]    [Pg.48]    [Pg.181]    [Pg.181]    [Pg.199]    [Pg.201]    [Pg.152]    [Pg.171]    [Pg.71]    [Pg.181]    [Pg.95]    [Pg.210]    [Pg.337]    [Pg.361]    [Pg.1433]    [Pg.1456]    [Pg.489]    [Pg.5]    [Pg.211]    [Pg.355]    [Pg.424]    [Pg.467]    [Pg.545]    [Pg.13]    [Pg.46]    [Pg.88]    [Pg.73]    [Pg.345]    [Pg.403]    [Pg.224]    [Pg.91]    [Pg.433]    [Pg.210]    [Pg.235]   
See also in sourсe #XX -- [ Pg.227 , Pg.228 ]




SEARCH



Catalyst selection

Catalyst selectivity

Catalyst shaping

Catalyst types

Catalysts catalyst types

Selective catalysts

Shape selection

Shape selectivity

Shaped catalysts

Shapes types

Type, selection

© 2024 chempedia.info