Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon-supported electrocatalysts preparation

The right choice of a carbon support greatly affects cell performance and durability. The purpose of this chapter is to analyze how structure and properties of carbon materials influence the performance of supported noble metal catalysts in the CLs of the PEMFCs. The review chapter is organized as follows. In Section 12.2 we give an overview of carbon materials utilized for the preparation of the catalytic layers of PEMFC. We describe traditional as well as novel carbon materials, in particular carbon nanotubes and nanofibers and mesoporous carbons. In Section 12.3 we analyze properties of carbon materials essential for fuel cell performance and how these are related to the structural and substructural characteristics of carbon materials. Sections 12.4 and 12.5 are devoted to the preparation and characterization of carbon-supported electrocatalysts and CLs. In Section 12.6 we analyze how carbon supports may influence fuel cell performance. Section 12.7 is devoted to the corrosion and stability of carbon materials and carbon-supported catalysts. In Section 12.8 we provide conclusions and an outlook. Due to obvious space constraints, it was not possible to give a comprehensive treatment of all published data, so rather, we present a selective review and provide references as to where an interested reader may find more detailed information. [Pg.432]

Recently, rhodium and ruthenium-based carbon-supported sulfide electrocatalysts were synthesized by different established methods and evaluated as ODP cathodic catalysts in a chlorine-saturated hydrochloric acid environment with respect to both economic and industrial considerations [46]. In particular, patented E-TEK methods as well as a non-aqueous method were used to produce binary RhjcSy and Ru Sy in addition, some of the more popular Mo, Co, Rh, and Redoped RuxSy catalysts for acid electrolyte fuel cell ORR applications were also prepared. The roles of both crystallinity and morphology of the electrocatalysts were investigated. Their activity for ORR was compared to state-of-the-art Pt/C and Rh/C systems. The Rh Sy/C, CojcRuyS /C, and Ru Sy/C materials synthesized by the E-TEK methods exhibited appreciable stability and activity for ORR under these conditions. The Ru-based materials showed good depolarizing behavior. Considering that ruthenium is about seven times less expensive than rhodium, these Ru-based electrocatalysts may prove to be a viable low-cost alternative to Rh Sy systems for the ODC HCl electrolysis industry. [Pg.321]

Similarly, Pd, Ag, and Pd-Ag nanoclusters on alumina have been prepared by the polyol method [230]. Dend-rimer encapsulated metal nanoclusters can be obtained by the thermal degradation of the organic dendrimers [368]. If salts of different metals are reduced one after the other in the presence of a support, core-shell type metallic particles are produced. In this case the presence of the support is vital for the success of the preparation. For example, the stepwise reduction of Cu and Pt salts in the presence of a conductive carbon support (Vulcan XC 72) generates copper nanoparticles (6-8 nm) that are coated with smaller particles of Pt (1-2 nm). This system has been found to be a powerful electrocatalyst which exhibits improved CO tolerance combined with high electrocatalytic efficiency. For details see Section 3.7 [53,369]. [Pg.36]

M. Morita, Y. Iwanaga, and Y. Matsuda, Anodic-oxidation of methanol at a gold-modified platinum electrocatalyst prepared by RE-sputtering on a glassy-carbon support, Electrichim. Acta 36, 947-951 (1991). [Pg.306]

Carbon-supported platinum (Pt) and platinum-rathenium (Pt-Ru) alloy are one of the most popular electrocatalysts in polymer electrolyte fuel cells (PEFC). Pt supported on electrically conducting carbons, preferably carbon black, is being increasingly used as an electrocatalyst in fuel cell applications (Parker et al., 2004). Carbon-supported Pt could be prepared at loadings as high as 70 wt.% without a noticeable increase of particle size. Unsupported and carbon-supported nanoparticle Pt-Ru, ,t m catalysts prepared using the surface reductive deposition... [Pg.151]

The direct electrochemical deposition methods for the preparation of electrocatalysts allow to localize the catalyst particles on the top surface of the carbon support, as close as possible to the solid polymer electrolyte and does not need heat (oxidative and/or reducing) treatment, as most of the chemical methods do, in order to clean the catalytic particles from surfactant contamination [27,28], This will prevent catalyst sintering due to the agglomeration of nanoparticles under thermal treatment. [Pg.397]

Clearly, there is great difficulty in preparing high surface area, mono-dispersed electrocatalysts on carbon supports, when any electrochemical process to diagnose the crystallite size or activity in these difficult environments perturbs the very physical properties of the electrocatalysts. [Pg.382]

Once a carbon support has been prepared, it is desirable to post-treat it to modify the surface structure in order to confer certain properties. Since the electrocatalyst is to be platinum on the carbon, even dispersion of the platinum crystallites over the carbon surface and minimal loss of surface area during fuel cell operation are important concerns. [Pg.406]

Because carbon black is the preferred support material for electrocatalysts, the methods of preparation of (bi)metallic nanoparticles are somewhat more restricted than with the oxide supports widely used in gas-phase heterogeneous catalysis. A further requirement imposed by the reduced mass-transport rates of the reactant molecules in the liquid phase versus the gas phase is that the metal loadings on the carbon support must be very high, e.g., at least lOwt.% versus 0.1-1 wt.% typically used in gas-phase catalysts. The relatively inert character of the carbon black surface plus the high metal loading means that widely practiced methods such as ion exchange [9] are not effective. The preferred methods are based on preparation of colloidal precursors, which are adsorbed onto the carbon black surface and then thermally decomposed or hydrogen-reduced to the (bi)metallic state. This method was pioneered by Petrow and Allen [10], and in the period from about 1970-1995 various colloidal methods are described essentially only in the patent literature. A useful survey of methods described in this literature can be found in the review by Stonehart [11]. Since about 1995, there has been more disclosure of colloidal methods in research journals, such as the papers by Boennemann and co-workers [12]. [Pg.336]

Taylor et al.8 were the first to report an electrochemical method for preparation of MEAs for PEMFCs. In their technique, Pt was electrochemically reduced and deposited at the electrode membrane interface, where it was actually utilized as an electrocatalyst. Nation, which is an ion exchange polymer membrane, is first coated on a noncatalyzed carbon support. The Nafion-coated carbon support is then immersed into a commercial acidic Pt plating solution for electrodeposition. Application of a cathodic potential results in diffusion of platinum cations through the active Nation layer. The migrated platinum species are reduced and form Pt particle at the electrode/membrane interface only on the sites which are both electronically and ionically conductive. The deposition of Pt particles merely at the electrode/membrane interface maximizes the Pt utilization. The Pt particles of 2-3.5 nm and a Pt loading of less than 0.05 mg cm-2 were obtained employing this technique.8 The limitation of this method is the difficulty of the diffusion of platinum... [Pg.119]

At NEU, a series of electrocatalysts were synthesized based on classical colloidal sol synthesis techniques. These included platinum nickel/carbon (PtNi/C), platinum chromium/carbon (PtCr/C), and platinum cobalt/carbon (PtCo/C) together with the control Pt/C. All of the above electrocatalysts were prepared with 20% metal loading on carbon support (Vulcan XC-72, Cabot Corp). Ohmic corrected Tafel... [Pg.398]

As well, EXAFS has been used to confirm that several series of carbon supported PtCo catalysts prepared by SEA are completely alloyed. The development of these alloys for fiael cell electrocatalysts, along with carbon supported Pt/Mo and Pt/Ru, is presently under way. [Pg.217]

For polymer electrolyte membrane fuel cell (PEMFC) applications, platinum and platinum-based alloy materials have been the most extensively investigated as catalysts for the electrocatalytic reduction of oxygen. A number of factors can influence the performance of Pt-based cathodic electrocatalysts in fuel cell applications, including (i) the method of Pt/C electrocatalyst preparation, (ii) R particle size, (iii) activation process, (iv) wetting of electrode structure, (v) PTFE content in the electrode, and the (vi) surface properties of the carbon support, among others. ... [Pg.36]

Case Study 2 Carbon (Vulcan XC72) Supported Bimetalhc Electrocatalysts. Preparation by the borate method of Pt-Cu colloidal catalysts having structural variations and comparative study of their electrochemical performance. [Pg.79]


See other pages where Carbon-supported electrocatalysts preparation is mentioned: [Pg.283]    [Pg.197]    [Pg.533]    [Pg.1010]    [Pg.443]    [Pg.443]    [Pg.445]    [Pg.447]    [Pg.415]    [Pg.415]    [Pg.417]    [Pg.419]    [Pg.110]    [Pg.321]    [Pg.336]    [Pg.310]    [Pg.9]    [Pg.182]    [Pg.232]    [Pg.308]    [Pg.181]    [Pg.336]    [Pg.461]    [Pg.534]    [Pg.182]    [Pg.618]    [Pg.1009]    [Pg.1011]    [Pg.443]    [Pg.445]    [Pg.74]    [Pg.526]    [Pg.10]    [Pg.445]    [Pg.446]   


SEARCH



Carbon preparation

Carbon support

Carbon supported

Carbon-supported electrocatalysts

Carbonate supports

Carbonates preparation

Electrocatalyst

Electrocatalyst preparation

Electrocatalysts

Electrocatalysts carbon

Electrocatalysts preparation

Preparation carbon-supported

Preparation of Carbon-Supported Electrocatalysts

Support preparation

© 2024 chempedia.info