Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Calcium carbonate removal

The key difference between the brine process and seawater process is the precipitation step. In the latter process (Fig. 6) the seawater is first softened by a dding small amounts of lime to remove bicarbonate and sulfates, present as MgSO. Bicarbonate must be removed prior to the precipitation step to prevent formation of insoluble calcium carbonate. Removal of sulfates prevents formation of gypsum, CaS02 2H20. Once formed, calcium carbonate and gypsum cannot be separated from the product. [Pg.347]

The salt consumption with a sodium 0.275 and 0.533 Lbs of salt per 1,000 grains of hardness, expressed as calcium carbonate, removed. This range is attributed to two factors (1) the water composition, and (2) the operating exchange value at which the exchange resin is to be worked. The lower salt consumption may be attained with waters that are not excessively hard nor high in sodium salts, and where the exchange resin is not worked at its maximum capacity. [Pg.385]

Calcinating limestone (composed of calcium carbonate) removes its volatile component (carbon dioxide) and results in the formation of quicklime (composed of calcium oxide) (see Textbox 33). [Pg.174]

I imagine that respiration adds total dissolved carbon at an isotope ratio of delcorg, specified by subroutine SPECS. I further assume that dissolution adds total carbon at an isotope ratio delcarb, also specified in subroutine SPECS. The precipitation of calcium carbonate removes total carbon at an isotope ratio equal to the isotope ratio of the pore water. There is no fractionation associated with either dissolution or precipitation in this system. Because the isotopic value associated with precipitation is different from that associated with dissolution, I have to test the sign of diss before adding the dissolution term to the equation for the rate of change of the isotope ratio in subroutine EQUATIONS. This test is made in the IF statements in this subroutine. [Pg.177]

Boivan-Loiseau A process for purifying cane sugar. Calcium hydroxide is added to the syrup, and carbon dioxide passed through it. The precipitated calcium carbonate removes some of the coloring impurities. [Pg.43]

In the present ocean calcium carbonate formation is dominated by pelagic plants (coccolithophores) and animals (foraminifera, pteropods, and heteropods). Examples are presented in Figure 4.13. Although benthic organisms are important in shoal water sediments, and for dating and geochemical studies in the deep sea sediments, they constitute only a minor portion of the calcium carbonate removed from deep seawater. Shoal water carbonates are discussed in detail in Chapter 5. [Pg.147]

Removal of dissolved C does not affect the amount of cations in seawater, so alkalinity (A) remains constant and Eqn 3.13 indicates that the concentration of carbonate ions will increase. Dissolved C02 levels decrease as both salinity and temperature increase (Weiss 1974) and, ultimately, seawater can become supersaturated with respect to calcium carbonate. Removal of CaC03 affects both alkalinity (because of the decrease in Ca2+ ions) and dissolved C concentrations. [Pg.111]

Journal of Applied Polymer Science 52, No.7, 16th May 1994, p.975-83 SIMULTANEOUS MEASUREMENT OF WATER DIFFUSION, SWELLING AND CALCIUM CARBONATE REMOVAL IN A LATEX PAINT USING FTIR-ATR Balik C M Xu J R North Carolina,State University... [Pg.112]

Boil 2 g. of the ester with 30 ml. of 10 per cent, sodium or potassium hydroxide solution under reflux for at least 1 hour. If the alcohol formed is water (or alkali) soluble, the completion of the hydrolysis will be indicated by the disappearance of the ester layer. Distil ofiF the liquid through the same condenser and collect the first 3-5 ml. of distillate. If a distinct la3 er separates on standing (or upon saturation of half the distillate with potassium carbonate), remove this layer with a capillary dropper, dry it with a little anhydrous potassium carbonate or anhydrous calcium sulphate, and determine the b.p. by the SiwoloboflF method... [Pg.391]

Fit a 1500 ml. bolt-head flask with a reflux condenser and a thermometer. Place a solution of 125 g. of chloral hydrate in 225 ml. of warm water (50-60°) in the flask, add successively 77 g. of precipitated calcium carbonate, 1 ml. of amyl alcohol (to decrease the amount of frothing), and a solution of 5 g. of commercial sodium cyanide in 12 ml. of water. An exothermic reaction occurs. Heat the warm reaction mixture with a small flame so that it reaches 75° in about 10 minutes and then remove the flame. The temperature will continue to rise to 80-85° during 5-10 minutes and then falls at this point heat the mixture to boiling and reflux for 20 minutes. Cool the mixture in ice to 0-5°, acidify with 107-5 ml. of concentrated hydrochloric acid. Extract the acid with five 50 ml. portions of ether. Dry the combined ethereal extracts with 10 g. of anhydrous sodium or magnesium sulphate, remove the ether on a water bath, and distil the residue under reduced pressure using a Claiseii flask with fractionating side arm. Collect the dichloroacetic acid at 105-107°/26 mm. The yield is 85 g. [Pg.431]

Separate the ketone layer from the water, and redistil the lattCT rmtil about one third of the material has passed over. Remove the ketone after salting out any dissolved ketone with potassium carbonate (5). Wash the combined ketone fractions four times with one third the volume of 35-40 per cent, calcium chloride solution in order to remove the alcohol. Dry over 15 g. of anhydrous calcium chloride it is best to shake in a separatory funnel with 1-2 g. of the anhydrous calcium chloride, remove the saturated solution of calcium chloride as formed, and then allow to stand over 10 g. of calcium chloride in a dry flask. Filter and distil. Collect the methyl n-butyl ketone at 126-128°. The yield is 71 g. [Pg.482]

Triturate 20 g. of dry o-toluidine hydrochloride and 35 5 g. of powdered iodine in a mortar and then grind in 17 -5 g. of precipitated calcium carbonate. Transfer the mixture to a conical flask, and add 100 ml. of distilled water with vigorous shaking of the flask. Allow the mixture to stand for 45 minutes with occasional agitation, then heat gradually to 60-70° for 5 minutes, and cool. Transfer the contents of the flask to a separatory funnel, extract the base with three 80 ml. portions of ether, diy the extract with anhydrous calcium chloride or magnesium sulphate, and remove the excess of solvent. The crude 5-iodo-2-aminotoluene separates in dark crystals. The yield is 32 g. Recrystallise from 50 per cent, alcohol nearly white crystals, m.p. 87°, are obtained. [Pg.648]

Dissolve 7 g. of pure oleic acid in 30 ml. of dry ethyl chloride (chloroform may be used but is less satisfactory), and ozonise at about —30°. Remove the solvent under reduced pressure, dissolve the residue in 50 ml. of dry methyl alcohol and hydrogenate as for adipic dialdehyde in the presence of 0 5 g. of palladium - calcium carbonate. Warm the resulting solution for 30 minutes with a slight excess of semicarbazide acetate and pour into water. Collect the precipitated semicarbazones and dry the... [Pg.892]

Lime Soda. Process. Lime (CaO) reacts with a dilute (10—14%), hot (100°C) soda ash solution in a series of agitated tanks producing caustic and calcium carbonate. Although dilute alkaH solutions increase the conversion, the reaction does not go to completion and, in practice, only about 90% of the stoichiometric amount of lime is added. In this manner the lime is all converted to calcium carbonate and about 10% of the feed alkaH remains. The resulting slurry is sent to a clarifier where the calcium carbonate is removed, then washed to recover the residual alkaH. The clean calcium carbonate is then calcined to lime and recycled while the dilute caustic—soda ash solution is sent to evaporators and concentrated. The concentration process forces precipitation of the residual sodium carbonate from the caustic solution the ash is then removed by centrifugation and recycled. Caustic soda made by this process is comparable to the current electrolytic diaphragm ceU product. [Pg.527]

In the commonly used Welland process, calcium cyanamide, made from calcium carbonate, is converted to cyanamide by reaction with carbon dioxide and water. Dicyandiamide is fused with ammonium nitrate to form guanidine nitrate. Dehydration with 96% sulfuric acid gives nitroguanidine which is precipitated by dilution. In the aqueous fusion process, calcium cyanamide is fused with ammonium nitrate ia the presence of some water. The calcium nitrate produced is removed by precipitation with ammonium carbonate or carbon dioxide. The filtrate contains the guanidine nitrate that is recovered by vacuum evaporation and converted to nitroguanidine. Both operations can be mn on a continuous basis (see Cyanamides). In the Marquerol and Loriette process, nitroguanidine is obtained directly ia about 90% yield from dicyandiamide by reaction with sulfuric acid to form guanidine sulfate followed by direct nitration with nitric acid (169—172). [Pg.16]

Alkali metal haHdes can be volatile at incineration temperatures. Rapid quenching of volatile salts results in the formation of a submicrometer aerosol which must be removed or else exhaust stack opacity is likely to exceed allowed limits. Sulfates have low volatiHty and should end up in the ash. Alkaline earths also form basic oxides. Calcium is the most common and sulfates are formed ahead of haHdes. Calcium carbonate is not stable at incineration temperatures (see Calcium compounds). Transition metals are more likely to form an oxide ash. Iron (qv), for example, forms ferric oxide in preference to haHdes, sulfates, or carbonates. SiHca and alumina form complexes with the basic oxides, eg, alkaH metals, alkaline earths, and some transition-metal oxidation states, in the ash. [Pg.58]

The esterification reaction in making ester oils is commonly carried out with a catalyst at about 210°C while removing excess water as it forms (32). Excess acid or alcohol is then stripped off, and unreacted acid is neutrali2ed with calcium carbonate or calcium hydroxide before final vacuum drying (qv) and filtration (qv). [Pg.245]

Naphthalenesulfonic Acid. The sulfonation of naphthalene with excess 96 wt % sulfuric acid at < 80°C gives > 85 wt % 1-naphthalenesulfonic acid (a-acid) the balance is mainly the 2-isomer (P-acid). An older German commercial process is based on the reaction of naphthalene with 96 wt % sulfuric acid at 20—50°C (13). The product can be used unpurifted to make dyestuff intermediates by nitration or can be sulfonated further. The sodium salt of 1-naphthalenesulfonic acid is required, for example, for the conversion of 1-naphthalenol (1-naphthol) by caustic fusion. In this case, the excess sulfuric acid first is separated by the addition of lime and is filtered to remove the insoluble calcium sulfate the filtrate is treated with sodium carbonate to precipitate calcium carbonate and leave the sodium l-naphthalenesulfonate/7J(9-/4-J7 in solution. The dry salt then is recovered, typically, by spray-drying the solution. [Pg.489]

Excess calcium hydroxide is precipitated by usiag carbon dioxide and the calcium carbonate, calcium hydroxide, and calcium phosphite are removed by filtration. The filtered solution is treated with an equivalent amount of sodium sulfate or sodium carbonate to precipitate calcium sulfate or carbonate. Sodium hypophosphite monohydrate [10039-56-2] is recovered upon concentration of the solution. Phosphinic acid is produced from the sodium salt by ion exchange (qv). The acid is sold as a 50 wt %, 30—32 wt %, or 10 wt % solution. The 30—32 wt % solution is sold as USP grade (Table 12) (63). Phosphinic acid and its salts are strong reduciag agents, especially ia alkaline solution (65). [Pg.375]

Aluminum sulfate [7784-31-8] solutions can also be used for all or part of the PAG Al source. In one process, a mixture of alum and aluminum chloride is neutralized using calcium carbonate, and soHd calcium sulfate [7778-18-9] is removed by filtration (22). In another process alum is mixed with calcium chloride and calcium hydroxide (23) ... [Pg.180]

Calcium carbonate is removed by filtration leaving an ammonium chloride solution. [Pg.364]

Many plants outside of North America pfill or granulate a mixture of ammonium nitrate and calcium carbonate. Production of this mixture, often called calcium ammonium nitrate, essentially removes any explosion hazard. In many cases calcium nitrate recovered from acidulation of phosphate rock (see Phosphoric acid and the phosphates) is reacted with ammonia and carbon dioxide to give a calcium carbonate—ammonium nitrate mixture containing 21 to 26% nitrogen (23). [Pg.367]

After removal of the calcium carbonate, the sulfate is recovered by evaporation and crystallization. [Pg.368]

Caustic soda is removed from the carbonate—bicarbonate solution by treating with a slight excess of hard-burned quicklime (or slaked lime) at 85—90°C in a stirred reactor. The regenerated caustic soda is separated from the calcium carbonate precipitate (lime mud) by centrifuging or rotary vacuum filtration. The lime mud retains 30—35% Hquid and, to avoid loss of caustic soda, must be weU-washed on the filter or centrifuge. Finally, the recovered caustic solution is adjusted to the 10% level for recycle by the addition of 40% makeup caustic soda. [Pg.340]


See other pages where Calcium carbonate removal is mentioned: [Pg.478]    [Pg.478]    [Pg.78]    [Pg.492]    [Pg.694]    [Pg.733]    [Pg.785]    [Pg.892]    [Pg.546]    [Pg.231]    [Pg.409]    [Pg.425]    [Pg.269]    [Pg.513]    [Pg.434]    [Pg.165]    [Pg.182]    [Pg.150]    [Pg.259]    [Pg.259]    [Pg.18]    [Pg.27]    [Pg.27]    [Pg.27]   
See also in sourсe #XX -- [ Pg.344 ]




SEARCH



Calcium carbonate

Calcium removal

Carbonate removal

© 2024 chempedia.info