Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bicarbonate-carbonate solutions

Na2HP0 solution (NAP) (140 mg/L), to provide a solution containing an inorganic complexing agent to form anionic species with reduced technetium (9). This anion was used instead of carbonate, as the purification system of the anaerobic chamber removes CO from the atmosphere, and a bicarbonate-carbonate solution would not be stable. [Pg.34]

Carbonates and carboxylates. There is only one Am carbonato complex reported. From combined spectroscopy and cyclic voltammetry data in bicarbonate/carbonate solutions, it was concluded that Am(C03)5 is the limiting carbonate complex of Am. Its formation is consistent... [Pg.324]

Reactions of Picric Acid, (i) The presence of the three nitro groups in picric acid considerably increases the acidic properties of the phenolic group and therefore picric acid, unlike most phenols, will evolve carbon dioxide from sodium carbonate solution. Show this by boiling picric acid with sodium carbonate solution, using the method described in Section 5, p. 330. The reaction is not readily shown by a cold saturated aqueous solution of picric acid, because the latter is so dilute that the sodium carbonate is largely converted into sodium bicarbonate without loss of carbon dioxide. [Pg.174]

This type of extraction depends upon the use of a reagent which reacts chemically with the compound to be extracted, and is generally employed either to remove small amounts of impurities in an organic compound or to separate the components of a mixture. Examples of such reagents include dilute (5 per cent.) aqueous sodium or potassium hydroxide solution, 5 or 10 per cent, sodium carbonate solution, saturated sodium bicarbonate solution (ca. 5 per cent.), dilute hydrochloric or sulphuric acid, and concentrated sulphuric acid. [Pg.151]

Dilute sodium hydroxide solution (and also sodium carbonate solution and sodium bicarbonate solution) can be employed for the removal of an organic acid from its solution in an organic solvent, or for the removal of acidic impurities present in a water-insoluble solid or liquid. The extraction is based upon the fact that the sodium salt of the acid is soluble in water or in dilute alkali, but is insoluble in the organic solvent. Similarly, a sparingly soluble phenol, e.g., p-naphthol, CioH,.OH, may be removed from its solution in an organic solvent by treatment with sodium hydroxide solution. [Pg.151]

Propiophenone. Prepare a solution of diphenyl-cadmium in 110 ml. of dry benzene using 4 9 g. of magnesium, 32 4 g. of bromobenzene and 19 5 g. of anhydrous cadmium chloride. Cool the solution to 10°, and add during 3 minutes a solution of 14 -8 g. of propionyl chloride (b.p. 78-79°) in 30 ml. of dry benzene use external coohng with an ice bath to prevent the temperature from rising above 40°. Stir the mixture for 2 hours at 25-35°. Work up the product as detailed above except that 6 per cent, sodium carbonate solution should replace the saturated sodium bicarbonate solution. The yield of propiophenone, b.p. 100-102°/16 mm., is 17 6 g. [Pg.937]

To hydrolyse an ester of a phenol (e.g., phenyl acetate), proceed as above but cool the alkaline reaction mixture and treat it with carbon dioxide until saturated (sohd carbon dioxide may also be used). Whether a solid phenol separates or not, remove it by extraction with ether. Acidify the aqueous bicarbonate solution with dilute sulphuric acid and isolate the acid as detailed for the ester of an alcohol. An alternative method, which is not so time-consuming, may be employed. Cool the alkaline reaction mixture in ice water, and add dilute sulphuric acid with stirring until the solution is acidic to Congo red paper and the acid, if aromatic or otherwise insoluble in the medium, commences to separate as a faint but permanent precipitate. Now add 5 per cent, sodium carbonate solution with vigorous stirring until the solution is alkaline to litmus paper and the precipitate redissolves completely. Remove the phenol by extraction with ether. Acidify the residual aqueous solution and investigate the organic acid as above. [Pg.1064]

Bisulphite compounds of aldehydes and ketones. These substances are decomposed by dilute acids into the corresponding aldehydes or ketones with the liberation of sulphur dioxide. The aldehyde or ketone may be isolated by steam distillation or by extraction with ether. Owing to the highly reactive character of aldehydes, the bisulphite addition compounds are best decomposed with saturated sodium bicarbonate solution so um carbonate solution is generally employed for the bisulphite compounds of ketones. [Pg.1079]

One ion-exchange process, which was used for several years by Quebec Lithium Corp., is based on the reaction of P-spodumene with an aqueous sodium carbonate solution in an autoclave at 190—250°C (21). A slurry of lithium carbonate and ore residue results, and is cooled and treated with carbon dioxide to solubilize the lithium carbonate as the bicarbonate. The ore residue is separated by filtration. The filtrate is heated to drive off carbon dioxide resulting in the precipitation of the normal carbonate. [Pg.222]

Other Coordination Complexes. Because carbonate and bicarbonate are commonly found under environmental conditions in water, and because carbonate complexes Pu readily in most oxidation states, Pu carbonato complexes have been studied extensively. The reduction potentials vs the standard hydrogen electrode of Pu(VI)/(V) shifts from 0.916 to 0.33 V and the Pu(IV)/(III) potential shifts from 1.48 to -0.50 V in 1 Tf carbonate. These shifts indicate strong carbonate complexation. Electrochemistry, reaction kinetics, and spectroscopy of plutonium carbonates in solution have been reviewed (113). The solubiUty of Pu(IV) in aqueous carbonate solutions has been measured, and the stabiUty constants of hydroxycarbonato complexes have been calculated (Fig. 6b) (90). [Pg.200]

The mauve colored cobalt(II) carbonate [7542-09-8] of commerce is a basic material of indeterminate stoichiometry, (CoCO ) ( (0 )2) H20, that contains 45—47% cobalt. It is prepared by adding a hot solution of cobalt salts to a hot sodium carbonate or sodium bicarbonate solution. Precipitation from cold solutions gives a light blue unstable product. Dissolution of cobalt metal in ammonium carbonate solution followed by thermal decomposition of the solution gives a relatively dense carbonate. Basic cobalt carbonate is virtually insoluble in water, but dissolves in acids and ammonia solutions. It is used in the preparation of pigments and as a starting material in the preparation of cobalt compounds. [Pg.377]

Alkalinity An expression of the total basic anions (hydroxyl groups) present in a solution. It also represents, particularly in water analysis, the bicarbonate, carbonate, and occasionally, the borate, silicate, and phosphate salts which will react with water to produce the hydroxyl groups. [Pg.435]

Danckwerts et al. (D6, R4, R5) recently used the absorption of COz in carbonate-bicarbonate buffer solutions containing arsenate as a catalyst in the study of absorption in packed column. The C02 undergoes a pseudo first-order reaction and the reaction rate constant is well defined. Consequently this reaction could prove to be a useful method for determining mass-transfer rates and evaluating the reliability of analytical approaches proposed for the prediction of mass transfer with simultaneous chemical reaction in gas-liquid dispersions. [Pg.302]

The complexation of Pu(IV) with carbonate ions is investigated by solubility measurements of 238Pu02 in neutral to alkaline solutions containing sodium carbonate and bicarbonate. The total concentration of carbonate ions and pH are varied at the constant ionic strength (I = 1.0), in which the initial pH values are adjusted by altering the ratio of carbonate to bicarbonate ions. The oxidation state of dissolved species in equilibrium solutions are determined by absorption spectrophotometry and differential pulse polarography. The most stable oxidation state of Pu in carbonate solutions is found to be Pu(IV), which is present as hydroxocarbonate or carbonate species. The formation constants of these complexes are calculated on the basis of solubility data which are determined to be a function of two variable parameters the carbonate concentration and pH. The hydrolysis reactions of Pu(IV) in the present experimental system assessed by using the literature data are taken into account for calculation of the carbonate complexation. [Pg.315]

Cobalt(II) carbonate is prepared by heating cobaltous sulfate, cobaltous chloride or any Co2+ salt with sodium bicarbonate in solution ... [Pg.234]

Rubidium also may be recovered by the chlorostannate method. In this method the alkali metal carbonate solution obtained from the mixed alum is treated with carbon dioxide. Most potassium is precipitated as bicarbonate, KHCO3. Addition of hydrochloric acid converts the carbonates to chlorides. The chlorides are converted to chlorostannates by carefully adding stoichiometric quantities of stannic chloride at pH just below 7 ... [Pg.797]


See other pages where Bicarbonate-carbonate solutions is mentioned: [Pg.455]    [Pg.31]    [Pg.71]    [Pg.387]    [Pg.120]    [Pg.726]    [Pg.455]    [Pg.31]    [Pg.71]    [Pg.387]    [Pg.120]    [Pg.726]    [Pg.30]    [Pg.31]    [Pg.278]    [Pg.669]    [Pg.1012]    [Pg.149]    [Pg.533]    [Pg.340]    [Pg.317]    [Pg.317]    [Pg.203]    [Pg.466]    [Pg.615]    [Pg.278]    [Pg.669]    [Pg.1239]    [Pg.555]    [Pg.158]    [Pg.122]    [Pg.259]    [Pg.121]    [Pg.217]   


SEARCH



Bicarbonate

Bicarbonate solution

Bicarbonate-carbonate solutions studies

Carbon-1 3 solution

Carbonate Solution

Carbonate-bicarbonate solutions and

Carbonate/bicarbonate

Precipitation of Magnesium Carbonate from Bicarbonate Solution

© 2024 chempedia.info