Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

C—M reactions

Marson, C. M. Reactions of carbonyl compounds with (monohalo) methyleniminium salts (Vilsmeier reagents). Tetrahedron 1992,48, 3659-3726. [Pg.700]

Venkatesh P K, Dean A M, Cohen M H and Carr R W 1999 Master equation analysis of intermolecular energy transfer in multiple-well, multiple-channel unimolecular reactions. II. Numerical methods and application to the mechanism of the C. + O2 reaction J. Chem. Phys. Ill 8313... [Pg.1085]

To a mixture of 100 ml of dry dichloromethane, 0.10 mol of propargyl alcohol and 0.11 mol of triethylamine was added a solution of 0.05 mol of Ph2PCl in 75 ml of dichloromethane in 3 min between -80 and -90°C. The cooling bath was removed, and when the temperature had reached 10°C, the reaction mixture was poured into a solution of 2.5 ml of 362 HCl in 100 ml of water. After vigorous shaking the lower layer was separated and the aqueous layer was extracted twice with 25-ml portions of dichloromethane. The combined solutions were washed twice with water, dried over magnesium sulfate and then concentrated in a water-pump vacuum, giving almost pure allenyl phosphine oxide as a white solid, m.p. 98-100 5, in almost 1002 yield. [Pg.199]

Alkenes in (alkene)dicarbonyl(T -cyclopentadienyl)iron(l+) cations react with carbon nucleophiles to form new C —C bonds (M. Rosenblum, 1974 A.J. Pearson, 1987). Tricarbon-yi(ri -cycIohexadienyI)iron(l-h) cations, prepared from the T] -l,3-cyclohexadiene complexes by hydride abstraction with tritylium cations, react similarly to give 5-substituted 1,3-cyclo-hexadienes, and neutral tricarbonyl(n -l,3-cyciohexadiene)iron complexes can be coupled with olefins by hydrogen transfer at > 140°C. These reactions proceed regio- and stereospecifically in the successive cyanide addition and spirocyclization at an optically pure N-allyl-N-phenyl-1,3-cyclohexadiene-l-carboxamide iron complex (A.J. Pearson, 1989). [Pg.44]

The benzyl group has been widely used for the protection of hydroxyl functions in carbohydrate and nucleotide chemistry (C.M. McCloskey, 1957 C.B. Reese, 1965 B.E. Griffin, 1966). A common benzylation procedure involves heating with neat benzyl chloride and strong bases. A milder procedure is the reaction in DMF solution at room temperatiue with the aid of silver oxide (E. Reinefeld, 1971). Benzyl ethers are not affected by hydroxides and are stable towards oxidants (e.g. periodate, lead tetraacetate), LiAIH, amd weak acids. They are, however, readily cleaved in neutral solution at room temperature by palladium-catalyzed bydrogenolysis (S. Tejima, 1963) or by sodium in liquid ammonia or alcohols (E.J. Rcist, 1964). [Pg.158]

Dehydration of this alcohol is selective m respect to its direction Elimination occurs m the direction that leads to the double bond between C 2 and C 3 more than between C 2 and C 1 Reactions that can proceed m more than one direction but m which one direction is preferred are said to be regioselective... [Pg.204]

Clearly the temperature at which the reaction occurs exerts a major influence on the product composition To understand why an important fact must be added The 1 2 and 1 4 addition products interconvert rapidly by allylic rearrangement at elevated tempera ture m the presence of hydrogen bromide Heating the product mixture to 45°C m the presence of hydrogen bromide leads to a mixture m which the ratio of 3 bromo 1 butene to 1 bromo 2 butene is 15 85... [Pg.406]

Aryl halides are less reactive than alkyl halides m reactions m which C—X bond breaking is rate determining especially m nucleophilic sub stitution reactions... [Pg.986]

Titanium trisulfide [12423-80-2], TiS, a black crystalline soHd having a monoclinic stmcture and a theoretical density of 3230 kg/m, can be prepared by reaction between titanium tetrachloride vapor and H2S at 480—540°C. The reaction product is then mixed with sulfur and heated to 600°C ia a sealed tube to remove residual chlorine. Sublimatioa may be used to separate the trisulfide (390°C) from the disulfide (500°C). Titanium trisulfide, iasoluble ia hydrochloric acid but soluble ia both hot and cold sulfuric acid, reacts with concentrated nitric acid to form titanium dioxide. [Pg.133]

Disappearance of benzalacetone and appearance of product can be readily monitored by thin layer or gas chromatographic analysis on a 1-m column packed with 20% Silicone SE-30 at 180°C. The reaction should be stopped as soon as disappearance of benzalacetone is confirmed. [Pg.87]

The hydrofluonnation of alkenes also occurs in the gas phase, generally at somewhat higher temperatures [J]. Huoroethane is obtained m yields as high as 98% at 100 to 160 C by reaction in the presence of minor amounts of higher ot-olefms [6], and 2-fluoropropane is prepared in greater than 90% yield at <.80 "C from hydrogen fluonde and propene in the presence of activated carbon [7]... [Pg.54]

The kinetics of alkaline hydrolysis of phenyl cinnamate were studied at 25°C, in solutions containing 0.8% acetonitrile ionic strength, 0.3 M initial ester, 8.19 X 10- M reaction followed spectrophotometrically in 5-cm cells at 295 nm. For studies at three pH values, these absorbance data were obtained. The pH was established with sodium hydroxide of the normality specified in the heading of the table (as titrimetrically determined). [Pg.55]

To a solution of m-ethyl cinnamate (44, 352 mg, 85% pure, 1.70 mmol) and 4-phenylpyridine-A-oxide (85.5 mg, 29 mol%) in 1,2-dichloromethane (4.0 mL) was added catalyst 12 (38.0 mg, 3.5 mol%). The resulting brown solution was cooled to 4°C and then combined with 4.0 mL (8.9 mmol) of pre-cooled bleach solution. The two-phase mixture was stirred for 12 h at 4°C. The reaction mixture was diluted with methyl-t-butyl ether (40 mL) and the organic phase separated, washed with water (2 x 40 mL), brine (40 mL), and then dried over Na2S04. The drying agent was removed by filtration the mother liquors concentrated under reduce pressure. The resulting residue was purified by flash chromatography (silica gel, pet ether/ether = 87 13 v/v) to afford a fraction enriched in cis-epoxide (45, cis/trans . 96 4, 215 mg) and a fraction enriched in trans-epoxide cis/trans 13 87, 54 mg). The combined yield of pure epoxides was 83%. ee of the cis-epoxide was determined to be 92% and the trans-epoxide to be 65%. [Pg.42]

The tridentate ligands C, L and M are effective catalysts for the enantioselective addition of dialkylzincs to aromatic aldehydes16,17. In particular, ligands L and M qualify as members of the chemical enzyme (chemzyme) class of synthetic reagents17, since they function in a predictable, clear-cut mechanistic way. As demonstrated by X-ray diffraction, the actual catalyst is a monomeric zinc chelate 2 formed in toluene at 50 C by reaction of L or M with one equivalent of diethylzinc. [Pg.171]


See other pages where C—M reactions is mentioned: [Pg.365]    [Pg.94]    [Pg.95]    [Pg.365]    [Pg.94]    [Pg.95]    [Pg.130]    [Pg.141]    [Pg.390]    [Pg.139]    [Pg.167]    [Pg.296]    [Pg.40]    [Pg.292]    [Pg.110]    [Pg.647]    [Pg.837]    [Pg.37]    [Pg.158]    [Pg.61]    [Pg.315]    [Pg.129]    [Pg.241]    [Pg.121]    [Pg.216]    [Pg.1412]    [Pg.510]    [Pg.510]    [Pg.12]    [Pg.102]    [Pg.106]    [Pg.162]    [Pg.180]    [Pg.264]    [Pg.489]    [Pg.540]    [Pg.743]   


SEARCH



M , reactions

Reactions Involving the M—C., Bond

© 2024 chempedia.info