Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetic acid from butane

The production of acetic acid from butane is a complex process. Nonetheless, sufficient information on product sequences and rates has been obtained to permit development of a mathematical model of the system. The relationships of the intermediates throw significant light on LPO mechanisms in general (22). Surprisingly, ca 25% of the carbon in the consumed butane is converted to ethanol in the first reaction step. Most of the ethanol is consumed by subsequent reaction. [Pg.343]

The same mechanism proposed for the combustion catalyst Mg-chromite apply also to catalysts that allow significant yields in acetic acid from n-butane, like vanadia-titania, that accordingly also show a medium-high Brpnsied acidity. Being acetate ions intermediates in the combustion way, it is easily rationalized that the production of acetic acid is favored by the addition of steam in the reactant mixture and by adjusting the reaction conditions. [Pg.490]

The third route, catalytic oxidation of butane, producing by-product MEK, accounts for only a modest portion of the total supply, less than 15%. Plants designed to produce acetic acid from the direct oxidation of butane... [Pg.246]

Rhodium compounds and complexes are also commercially important catalysts. The hydroformylation of propene to butanal (a precursor of hfr(2-ethyUiexyl) phthalate, the PVC plasticizer) is catalyzed by hydridocarbonylrhodium(I) complexes. Iodo(carbonyl)rhodium(I) species catalyze the production of acetic acid from methanol. In the flne chemical industry, rhodium complexes with chiral ligands catalyze the production of L-DOPA, used in the treatment of Parkinson s disease. Rhodium(II) carboxylates are increasingly important as catalysts in the synthesis of cyclopropyl compounds from diazo compounds. Many of the products are used as synthetic, pyrethroid insecticides. Hexacyanorhodate(III) salts are used to dope silver halides in photographic emulsions to reduce grain size and improve gradation. [Pg.4055]

Production of acids (i) terephthalic acid from p-xylene, (ii) acetic acid from n-butane,... [Pg.171]

Acetic acid from butane or acetaldehyde Co(II), Cu(II), Mn(II) salts... [Pg.593]

The typical reaction is conducted at temperatures and pressures designed to be as hot as possible while still keeping the butane a liquid. Typical reaction conditions are 150 °C and 55 atm. Side-products may also form, including butanone, ethyl acetate, formic acid, and propionic acid. These side-products are also commercially valuable, and the reaction conditions may be altered to produce more of them where needed. However, the separation of acetic acid from these by-products adds to the cost of the process. [Pg.22]

Since 1960, the Hquid-phase oxidation of ethylene has been the process of choice for the manufacture of acetaldehyde. There is, however, stiU some commercial production by the partial oxidation of ethyl alcohol and hydration of acetylene. The economics of the various processes are strongly dependent on the prices of the feedstocks. Acetaldehyde is also formed as a coproduct in the high temperature oxidation of butane. A more recently developed rhodium catalyzed process produces acetaldehyde from synthesis gas as a coproduct with ethyl alcohol and acetic acid (83—94). [Pg.51]

Commercial production of acetic acid has been revolutionized in the decade 1978—1988. Butane—naphtha Hquid-phase catalytic oxidation has declined precipitously as methanol [67-56-1] or methyl acetate [79-20-9] carbonylation has become the technology of choice in the world market. By-product acetic acid recovery in other hydrocarbon oxidations, eg, in xylene oxidation to terephthaUc acid and propylene conversion to acryflc acid, has also grown. Production from synthesis gas is increasing and the development of alternative raw materials is under serious consideration following widespread dislocations in the cost of raw material (see Chemurgy). [Pg.66]

Currently, almost all acetic acid produced commercially comes from acetaldehyde oxidation, methanol or methyl acetate carbonylation, or light hydrocarbon Hquid-phase oxidation. Comparatively small amounts are generated by butane Hquid-phase oxidation, direct ethanol oxidation, and synthesis gas. Large amounts of acetic acid are recycled industrially in the production of cellulose acetate, poly(vinyl alcohol), and aspirin and in a broad array of other... [Pg.66]

Butane-Naphtha Catalytic Liquid-Phase Oxidation. Direct Hquid-phase oxidation ofbutane and/or naphtha [8030-30-6] was once the most favored worldwide route to acetic acid because of the low cost of these hydrocarbons. Butane [106-97-8] in the presence of metallic ions, eg, cobalt, chromium, or manganese, undergoes simple air oxidation in acetic acid solvent (48). The peroxidic intermediates are decomposed by high temperature, by mechanical agitation, and by action of the metallic catalysts, to form acetic acid and a comparatively small suite of other compounds (49). Ethyl acetate and butanone are produced, and the process can be altered to provide larger quantities of these valuable materials. Ethanol is thought to be an important intermediate (50) acetone forms through a minor pathway from isobutane present in the hydrocarbon feed. Formic acid, propionic acid, and minor quantities of butyric acid are also formed. [Pg.68]

Although acetic acid and water are not beheved to form an azeotrope, acetic acid is hard to separate from aqueous mixtures. Because a number of common hydrocarbons such as heptane or isooctane form azeotropes with formic acid, one of these hydrocarbons can be added to the reactor oxidate permitting separation of formic acid. Water is decanted in a separator from the condensate. Much greater quantities of formic acid are produced from naphtha than from butane, hence formic acid recovery is more extensive in such plants. Through judicious recycling of the less desirable oxygenates, nearly all major impurities can be oxidized to acetic acid. Final acetic acid purification follows much the same treatments as are used in acetaldehyde oxidation. Acid quahty equivalent to the best analytical grade can be produced in tank car quantities without difficulties. [Pg.68]

About half of the wodd production comes from methanol carbonylation and about one-third from acetaldehyde oxidation. Another tenth of the wodd capacity can be attributed to butane—naphtha Hquid-phase oxidation. Appreciable quantities of acetic acid are recovered from reactions involving peracetic acid. Precise statistics on acetic acid production are compHcated by recycling of acid from cellulose acetate and poly(vinyl alcohol) production. Acetic acid that is by-product from peracetic acid [79-21-0] is normally designated as virgin acid, yet acid from hydrolysis of cellulose acetate or poly(vinyl acetate) is designated recycle acid. Indeterrninate quantities of acetic acid are coproduced with acetic anhydride from coal-based carbon monoxide and unknown amounts are bartered or exchanged between corporations as a device to lessen transport costs. [Pg.69]

Liquid-phase oxidation of lower hydrocarbons has for many years been an important route to acetic acid [64-19-7]. In the United States, butane has been the preferred feedstock, whereas ia Europe naphtha has been used. Formic acid is a coproduct of such processes. Between 0.05 and 0.25 tons of formic acid are produced for every ton of acetic acid. The reaction product is a highly complex mixture, and a number of distillation steps are required to isolate the products and to recycle the iatermediates. The purification of the formic acid requires the use of a2eotropiag agents (24). Siace the early 1980s hydrocarbon oxidation routes to acetic acid have decliaed somewhat ia importance owiag to the development of the rhodium-cataly2ed route from CO and methanol (see Acetic acid). [Pg.504]

A process to convert butenes to acetic acid has been developed by Farbenfabriken Bayer AG (137) and could be of particular interest to Europe and Japan where butylenes have only fuel value. In this process a butane—butylene stream from which butadiene and isobutylene have been removed reacts with acetic acid in the presence of acid ion-exchange resin at 100—120°C and 1500—2000 kPa (about 15—20 atm) (see Acetic acid and its derivatives, acetic acid). Both butenes react to yield j -butyl acetate which is then oxidized at about 200°C and 6 MPa (about 60 atm) without catalyst to yield acetic acid. [Pg.374]

This process may be competitive with butane oxidation (see Hydrocarbon oxidation) which produces a spectmm of products (138), but neither process is competitive with the process from synthesis gas practiced by Monsanto (139) and BASF (140) which have been used in 90% of the new acetic acid capacity added since 1975. [Pg.374]

Acetic acid (qv) can be produced synthetically (methanol carbonylation, acetaldehyde oxidation, butane/naphtha oxidation) or from natural sources (5). Oxygen is added to propylene to make acrolein, which is further oxidized to acryHc acid (see Acrylic acid and derivatives). An alternative method adds carbon monoxide and/or water to acetylene (6). Benzoic acid (qv) is made by oxidizing toluene in the presence of a cobalt catalyst (7). [Pg.94]

Ethanol s use as a chemical iatemiediate (Table 8) suffered considerably from its replacement ia the production of acetaldehyde, butyraldehyde, acetic acid, and ethyUiexanol. The switch from the ethanol route to those products has depressed demand for ethanol by more than 300 x 10 L (80 x 10 gal) siace 1970. This decrease reflects newer technologies for the manufacture of acetaldehyde and acetic acid, which is the largest use for acetaldehyde, by direct routes usiag ethylene, butane (173), and methanol. Oxo processes (qv) such as Union Carbide s Low Pressure Oxo process for the production of butanol and ethyUiexanol have totaUy replaced the processes based on acetaldehyde. For example, U.S. consumption of ethanol for acetaldehyde manufacture declined steadily from 50% ia 1962 to 37% ia 1964 and none ia 1990. Butadiene was made from ethanol on a large scale duriag World War II, but this route is no longer competitive with butadiene derived from petroleum operations. [Pg.415]

In 1953 the Celanese Corporation of America introduced a route for the production of vinyl acetate from light petroleum gases. This involved the oxidation of butane which yields such products as acetic acid and acetone. Two derivatives of these products are acetic anhydride and acetaldehyde, which then react together to give ethylidene diacetate (Figure 14.2.)... [Pg.387]

Acetic acid is obtained from different sources. Carbonylation of methanol is currently the major route. Oxidation of butanes and butenes is an important source of acetic acid, especially in the U.S. (Chapter 6). It is also produced by the catalyzed oxidation of acetaldehyde ... [Pg.199]

Other methods for the preparation of acetic acid are partial oxidation of butane, oxidation of ethanal -obtained from Wacker oxidation of ethene-, biooxidation of ethanol for food applications, and we may add the same carbonylation reaction carried out with a cobalt catalyst or an iridium catalyst. The rhodium and iridium catalysts have several distinct advantages over the cobalt catalyst they are much fester and fer more selective. In process terms the higher rate is translated into much lower pressures (the cobalt catalyst is operated by BASF at pressures of 700 bar). For years now the Monsanto process (now owned by BP) has been the most attractive route for the preparation of acetic acid, but in recent years the iridium-based CATTVA process, developed by BP, has come on stream. [Pg.109]

Most hterature references to pharmaceutical primary process monitoring are for batch processes, where a model of the process is built from calibration experiments [110, 111]. Many of these examples have led to greater understanding of the process monitored and can therefore be a precursor to design of a continuous process. For example, the acid-catalysed esterification of butan-l-ol by acetic acid was monitored through a factorial designed series of experiments in order to establish reaction kinetics, rate constants, end points, yields, equilibrium constants and the influence of initial water. Statistical analysis demonstrated that high temperatures and an excess of acetic acid were the optimal conditions [112]. [Pg.257]

A second manufacturing method for acetic acid utilizes butane from the C4 petroleum stream rather than ethylene. It is a very complex oxidation with a variety of products formed, but conditions can be controlled to allow a large percentage of acetic acid to be formed. Cobalt (best), manganese, or chromium acetates are catalysts with temperatures of 50-250 °C and a pressure of 800 psi. [Pg.151]

Beginning in the fifties, acetic acid was predominantly obtained from paraffin oxidation, especially n-butane W. Acetic acid s chemical history has been rich and varied. [Pg.62]


See other pages where Acetic acid from butane is mentioned: [Pg.68]    [Pg.69]    [Pg.344]    [Pg.489]    [Pg.26]    [Pg.386]    [Pg.68]    [Pg.69]    [Pg.386]    [Pg.68]    [Pg.69]    [Pg.6531]    [Pg.40]    [Pg.168]    [Pg.116]    [Pg.1106]    [Pg.1506]    [Pg.486]    [Pg.172]    [Pg.73]    [Pg.230]    [Pg.67]    [Pg.563]    [Pg.387]    [Pg.259]    [Pg.149]   
See also in sourсe #XX -- [ Pg.175 ]




SEARCH



Acetal from

Butan acid

© 2024 chempedia.info