Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stokes derivative

A quite different approach was adopted by Robinson and Stokes [8], who emphasized, as above, that if the solute dissociated into ions, and a total of h molecules of water are required to solvate these ions, then the real concentration of the ions should be corrected to reflect only the bulk solvent. Robinson and Stokes derive, with these ideas, the following expression for the activity coefficient ... [Pg.584]

In 1851, Stokes derived Eq. (4.1) from the model of solid spherical particles falling independently through a homogeneous liquid without Brownian motion, slippage, and wall effects. Slippage is an inconstant rate of fall wall effects refer to axial orientation in the outermost planes of fluid in contact with a surface, and the differential velocity of flow in the outermost and innermost planes of a fluid in a confining tube ... [Pg.75]

The left-hand term of Eq. 7.78 is often called the Stokes derivative or the... [Pg.286]

Most theoretical treatments of ionic conductance have been based on an equation published well over a century ago by Sir George Stokes " although it was not applied to ions until much later. Stokes derived hydrodynamically the steady-state velocity with which a large sphere... [Pg.636]

Newton tried to derive this equation in his Principia, but he made an error that was not discovered until 1845, when Stokes derived... [Pg.192]

The expression for the DEP force was presented above, using Stokes derivation when only the drag and the DEP forces on a spherical particle are considered ... [Pg.141]

Strictly speaking, the following conditions pertain to both the Stokes derivation and the standard drag curve and the above associated drag coefr ficient correlations (Tchen, 1947 Torobin and Gauvin, 1959a) ... [Pg.309]

If these assumptions are satisfied then the ideas developed earlier about the mean free path can be used to provide qualitative but useful estimates of the transport properties of a dilute gas. While many varied and complicated processes can take place in fluid systems, such as turbulent flow, pattern fonnation, and so on, the principles on which these flows are analysed are remarkably simple. The description of both simple and complicated flows m fluids is based on five hydrodynamic equations, die Navier-Stokes equations. These equations, in trim, are based upon the mechanical laws of conservation of particles, momentum and energy in a fluid, together with a set of phenomenological equations, such as Fourier s law of themial conduction and Newton s law of fluid friction. When these phenomenological laws are used in combination with the conservation equations, one obtains the Navier-Stokes equations. Our goal here is to derive the phenomenological laws from elementary mean free path considerations, and to obtain estimates of the associated transport coefficients. Flere we will consider themial conduction and viscous flow as examples. [Pg.671]

A proposal based on Onsager s theory was made by Landau and Lifshitz [27] for the fluctuations that should be added to the Navier-Stokes hydrodynamic equations. Fluctuating stress tensor and heat flux temis were postulated in analogy with the Onsager theory. Flowever, since this is a case where the variables are of mixed time reversal character, tlie derivation was not fiilly rigorous. This situation was remedied by tlie derivation by Fox and Ulilenbeck [13, H, 18] based on general stationary Gaussian-Markov processes [12]. The precise fomi of the Landau proposal is confimied by this approach [14]. [Pg.705]

In the Smoluchowski limit, one usually assumes that the Stokes-Einstein relation (Dq//r7)a = C holds, which fonns the basis of taking the solvent viscosity as a measure for the zero-frequency friction coefficient appearing in Kramers expressions. Here C is a constant whose exact value depends on the type of boundary conditions used in deriving Stokes law. It follows that the diffiision coefficient ratio is given by ... [Pg.850]

Figure Bl.14.13. Derivation of the droplet size distribution in a cream layer of a decane/water emulsion from PGSE data. The inset shows the signal attenuation as a fiinction of the gradient strength for diflfiision weighting recorded at each position (top trace = bottom of cream). A Stokes-based velocity model (solid lines) was fitted to the experimental data (solid circles). The curious horizontal trace in the centre of the plot is due to partial volume filling at the water/cream interface. The droplet size distribution of the emulsion was calculated as a fiinction of height from these NMR data. The most intense narrowest distribution occurs at the base of the cream and the curves proceed logically up tlirough the cream in steps of 0.041 cm. It is concluded from these data that the biggest droplets are found at the top and the smallest at the bottom of tlie cream. Figure Bl.14.13. Derivation of the droplet size distribution in a cream layer of a decane/water emulsion from PGSE data. The inset shows the signal attenuation as a fiinction of the gradient strength for diflfiision weighting recorded at each position (top trace = bottom of cream). A Stokes-based velocity model (solid lines) was fitted to the experimental data (solid circles). The curious horizontal trace in the centre of the plot is due to partial volume filling at the water/cream interface. The droplet size distribution of the emulsion was calculated as a fiinction of height from these NMR data. The most intense narrowest distribution occurs at the base of the cream and the curves proceed logically up tlirough the cream in steps of 0.041 cm. It is concluded from these data that the biggest droplets are found at the top and the smallest at the bottom of tlie cream.
Equations (1.6) and (1.7) are used to formulate explicit relationships between the extra stress components and the velocity gradients. Using these relationships the extra stress, t, can be eliminated from the governing equations. This is the basis for the derivation of the well-known Navier-Stokes equations which represent the Newtonian flow (Aris, 1989). [Pg.4]

In this section the governing Stokes flow equations in Cartesian, polar and axisymmetric coordinate systems are presented. The equations given in two-dimensional Cartesian coordinate systems are used to outline the derivation of the elemental stiffness equations (i.e. the working equations) of various finite element schemes. [Pg.111]

Using a procedure similar to the derivation of Equation (4.13) the working equations of the U-V-P scheme for steady-state Stokes flow in a polar (r, 6) coordinate system are obtained on the basis of Equations (4.5) and (4.6) as... [Pg.116]

Step 2 General structure of stiffness matrices derived for the model equations of Stokes flow in (x, 3O and (r, z) formulations (see Chapter 4) are compared. [Pg.215]

A somewhat similar problem arises in describing the viscosity of a suspension of spherical particles. This problem was analyzed by Einstein in 1906, with some corrections appearing in 1911. As we did with Stokes law, we shall only present qualitative arguments which give plausibility to the final form. The fact that it took Einstein 5 years to work out the bugs in this theory is an indication of the complexity of the formal analysis. Derivations of both the Stokes and Einstein equations which do not require vector calculus have been presented by Lauffer [Ref. 3]. The latter derivations are at about the same level of difficulty as most of the mathematics in this book. We shall only hint at the direction of Lauffer s derivation, however, since our interest in rigid spheres is marginal, at best. [Pg.587]

The spherical geometry assumed in the Stokes and Einstein derivations gives the highly symmetrical boundary conditions favored by theoreticians. For ellipsoids of revolution having an axial ratio a/b, friction factors have been derived by F. Perrin, and the coefficient of the first-order term in Eq. (9.9) has been derived by Simha. In both cases the calculated quantities increase as the axial ratio increases above unity. For spheres, a/b = 1. [Pg.590]

In the derivation of both Eqs. (9.4) and (9.9), the disturbance of the flow streamlines is assumed to be produced by a single particle. This is the origin of the limitation to dilute solutions in the Einstein theory, where the net effect of an array of spheres is treated as the sum of the individual nonoverlapping disturbances. When more than one sphere is involved, the same limitation applies to Stokes law also. In both cases contributions from the walls of the container are also assumed to be absent. [Pg.590]

As of this writing, the only practical approach to solving turbulent flow problems is to use statistically averaged equations governing mean flow quantities. These equations, which are usually referred to as the Reynolds equations of motion, are derived by Reynold s decomposition of the Navier-Stokes equations (18). The randomly changing variables are represented by a time mean and a fluctuating part ... [Pg.101]

The quantity k is related to the intensity of the turbulent fluctuations in the three directions, k = 0.5 u u. Equation 41 is derived from the Navier-Stokes equations and relates the rate of change of k to the advective transport by the mean motion, turbulent transport by diffusion, generation by interaction of turbulent stresses and mean velocity gradients, and destmction by the dissipation S. One-equation models retain an algebraic length scale, which is dependent only on local parameters. The Kohnogorov-Prandtl model (21) is a one-dimensional model in which the eddy viscosity is given by... [Pg.102]

StoKes-Einstein and Free-Volume Theories The starting point for many correlations is the Stokes-Einstein equation. This equation is derived from continuum fluid mechanics and classical thermodynamics for the motion of large spherical particles in a liqmd. [Pg.596]

Because the Navier-Stokes equations are first-order in pressure and second-order in velocity, their solution requires one pressure bound-aiy condition and two velocity boundaiy conditions (for each velocity component) to completely specify the solution. The no sBp condition, whicn requires that the fluid velocity equal the velocity or any bounding solid surface, occurs in most problems. Specification of velocity is a type of boundary condition sometimes called a Dirichlet condition. Often boundary conditions involve stresses, and thus velocity gradients, rather than the velocities themselves. Specification of velocity derivatives is a Neumann boundary condition. For example, at the boundary between a viscous liquid and a gas, it is often assumed that the liquid shear stresses are zero. In numerical solution of the Navier-... [Pg.634]

These last named materials may be considered as derivatives of the inorganic rubber, polyphosphonitrilic chloride, discovered by Stokes in 1895. This was prepared by the reaction of phosphorus pentachloride with ammonium chloride as follows ... [Pg.383]

The full concentration equation for the contaminant may be simplified in the same manner as the Navier-Stokes equations to derive a boundary-layer approximation for the concentration, namely,... [Pg.949]

Theoretical representation of the behaviour of a hydrocyclone requires adequate analysis of three distinct physical phenomenon taking place in these devices, viz. the understanding of fluid flow, its interactions with the dispersed solid phase and the quantification of shear induced attrition of crystals. Simplified analytical solutions to conservation of mass and momentum equations derived from the Navier-Stokes equation can be used to quantify fluid flow in the hydrocyclone. For dilute slurries, once bulk flow has been quantified in terms of spatial components of velocity, crystal motion can then be traced by balancing forces on the crystals themselves to map out their trajectories. The trajectories for different sizes can then be used to develop a separation efficiency curve, which quantifies performance of the vessel (Bloor and Ingham, 1987). In principle, population balances can be included for crystal attrition in the above description for developing a thorough mathematical model. [Pg.115]

We cannot deal here with the details of the hydrodynamic Navier-Stokes equations and their consequences. For dimensional reasons one can derive the following expression [150] for the thickness of the boundary layer when the crystal rotates with angular frequency u>... [Pg.903]


See other pages where Stokes derivative is mentioned: [Pg.239]    [Pg.569]    [Pg.275]    [Pg.287]    [Pg.282]    [Pg.239]    [Pg.569]    [Pg.275]    [Pg.287]    [Pg.282]    [Pg.121]    [Pg.686]    [Pg.1215]    [Pg.2530]    [Pg.5]    [Pg.79]    [Pg.288]    [Pg.88]    [Pg.541]    [Pg.636]    [Pg.672]    [Pg.1431]    [Pg.1481]   
See also in sourсe #XX -- [ Pg.275 ]




SEARCH



Navier Stokes equation flow models derived from

Navier-Stokes equations derivation

© 2024 chempedia.info