Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Explicit solvent molecules

A second idea to save computational time addresses the fact that hydrogen atoms, when involved in a chemical bond, show the fastest motions in a molecule. If they have to be reproduced by the simulation, the necessary integration time step At has to be at least 1 fs or even less. This is a problem especially for calculations including explicit solvent molecules, because in the case of water they do not only increase the number of non-bonded interactions, they also increase the number of fast-moving hydrogen atoms. This particular situation is taken into account... [Pg.362]

By using an effective, distance-dependent dielectric constant, the ability of bulk water to reduce electrostatic interactions can be mimicked without the presence of explicit solvent molecules. One disadvantage of aU vacuum simulations, corrected for shielding effects or not, is the fact that they cannot account for the ability of water molecules to form hydrogen bonds with charged and polar surface residues of a protein. As a result, adjacent polar side chains interact with each other and not with the solvent, thus introducing additional errors. [Pg.364]

You can use two types of dielectric fun ction s a con stan t an d a dis-tan ce-depen den t dielectric. Use con stan t dielectric for in i- floio systems and for molecular systems wfith explicit solvent molecules. [Pg.103]

Also use constant dielectric Tor MM+aiul OPLS ciilciilatimis. Use the (lislance-flepeiident dielecinc for AMBER and BlO+to mimic the screening effects of solvation when no explicit solvent molecules are present. The scale factor for the dielectric permittivity, n. can vary from 1 to H(l. IlyperChem sets tt to 1. .5 for MM-r. Use 1.0 for AMBER and OPLS. and 1.0-2..5 for BlO-r. [Pg.104]

The most accurate calculations are those that use a layer of explicit solvent molecules surrounded, in turn, by a continuum model. This adds the additional... [Pg.212]

A layer of explicit solvent molecules surrounded by a continuum description for the highest possible accuracy. [Pg.213]

As for the dielectric constant, when explicit solvent molecules are included in the calculations, a value of 1, as in vacuum, should be used because the solvent molecules themselves will perform the charge screening. The omission of explicit solvent molecules can be partially accounted for by the use of an / -dependent dielectric, where the dielectric constant increases as the distance between the atoms, increases (e.g., at a separation of 1 A the dielectric constant equals 1 at a 3 A separation the dielectric equals 3 and so on). Alternatives include sigmoidal dielectrics [80] however, their use has not been widespread. In any case, it is important that the dielectric constant used for a computation correspond to that for which the force field being used was designed use of alternative dielectric constants will lead to improper weighting of the different electrostatic interactions, which may lead to significant errors in the computations. [Pg.22]

It is possible to go beyond the SASA/PB approximation and develop better approximations to current implicit solvent representations with sophisticated statistical mechanical models based on distribution functions or integral equations (see Section V.A). An alternative intermediate approach consists in including a small number of explicit solvent molecules near the solute while the influence of the remain bulk solvent molecules is taken into account implicitly (see Section V.B). On the other hand, in some cases it is necessary to use a treatment that is markedly simpler than SASA/PB to carry out extensive conformational searches. In such situations, it possible to use empirical models that describe the entire solvation free energy on the basis of the SASA (see Section V.C). An even simpler class of approximations consists in using infonnation-based potentials constructed to mimic and reproduce the statistical trends observed in macromolecular structures (see Section V.D). Although the microscopic basis of these approximations is not yet formally linked to a statistical mechanical formulation of implicit solvent, full SASA models and empirical information-based potentials may be very effective for particular problems. [Pg.148]

For solvent models where the cavity/dispersion interaction is parameterized by fitting to experimental solvation energies, the use of a few explicit solvent molecules for the first solvation sphere is not recommended, as the parameterization represents a best fit to experimental data without any explicit solvent present. [Pg.394]

The solution phase is modeled explicitly by the sequential addition of solution molecules in order to completely fill the vacuum region that separates repeated metal slabs (Fig. 4.2a) up to the known density of the solution. The inclusion of explicit solvent molecules allow us to directly follow the influence of specific intermolecular interactions (e.g., hydrogen bonding in aqueous systems or electron polarization of the metal surface) that influence the binding energies of different intermediates and the reaction energies and activation barriers for specific elementary steps. [Pg.97]

The weakest point of our approach is the treatment of the bulk solvent. The energies derived from an implicit solvent model like IPCM are mainly based on energy calculations on gas-phase structures and effects of explicit solvent molecules are not included. [Pg.536]

Nevertheless, there is still much work to do in this field. The inclusion of solvent and/or counterions is just at the beginning, and solvent effects have been included with continuum models only. In the next years we will probably arrive to dynamically simulate the whole polymerization process in the presence of the counterion and of explicit solvent molecules. As for the experimental issues which have been not rationalized yet computationally, we remark that still it is not easy to model the relative activity of different catalysts, and even to predict if a certain catalyst will show any activity at all. Moreover, copolymerizations still represent an untackled problem. However, considering the pace at which the understanding of once obscure facts progressed it is not difficult to predict that also these challenges will be positively solved. [Pg.51]

Hybrid solvation Implicit solvation plus Explicit solvation microsolvation subjected to the continuum method. Here the solute molecule is associated with explicit solvent molecules, usually no more than a few and sometimes as few as one, and with its bound (usually hydrogen-bonded) solvent molecule(s) is subjected to a continuum calculation. Such hybrid calculations have been used in attempts to improve values of solvation free energies in connection with pKp. [42], and also [45] and references therein. Other examples of the use of hybrid solvation are the hydration of the environmentally important hydroxyl radical [52] and of the ubiquitous alkali metal and halide ions [53]. Hybrid solvation has been surveyed in a review oriented toward biomolecular applications [54]. [Pg.534]

Give an example of a reaction for which just one explicit solvent molecule might be adequate in simulating a reaction mechanism. [Pg.558]

The molecule can then be solvated with explicit solvent molecules by inputing the modified structure file into the genbox program. Specify a solvent model in. gro file format (e.g., spc216.gro for water) consisting of a small box containing a... [Pg.117]

The data shown in this section demonstrate that the simultaneous optimization of the solute geometry and the solvent polarization is possible and it provides the same results as the normal approach. In the case of CPCM it already performs better than the normal scheme, even with a simple optimization algorithm, and it will probably be the best choice when large molecules are studied (when the PCM matrices cannot be kept in memory). This functional can thus be directly used to perform MD simulations in solution without considering explicit solvent molecules but still taking into account the dynamics of the solvent. On the other hand, the DPCM functional presents numerical difficulties that must be studied and overcome in order to allow its use for dynamic simulations in solution. [Pg.77]

The accuracy of the cluster/PCM approach is so high that, as shown in Figure 2.6, the computed EPR properties provide valuable indirect information on the nature of the H-bond network around the NO group. In the case of water, computed results in good agreement with experiment are obtained only when two explicit solvent molecules H-bonded to the nitroxyl moiety are introduced by contrast, a single explicit solvent molecule is required for alcohols. [Pg.157]

C. P. Kelly, C. J. Cramer and D. G. Truhlar, Adding explicit solvent molecules to continuum solvent calculations for the calculation of aqueous acid dissociation constants, J. Phys. Chem. A, 110 (2006) 2493-2499. [Pg.335]

Equation (3.21) shows that the potential of the mean force is an effective potential energy surface created by the solute-solvent interaction. The PMF may be calculated by an explicit treatment of the entire solute-solvent system by molecular dynamics or Monte Carlo methods, or it may be calculated by an implicit treatment of the solvent, such as by a continuum model, which is the subject of this book. A third possibility (discussed at length in Section 3.3.3) is that some solvent molecules are explicit or discrete and others are implicit and represented as a continuous medium. Such a mixed discrete-continuum model may be considered as a special case of a continuum model in which the solute and explicit solvent molecules form a supermolecule or cluster that is embedded in a continuum. In this contribution we will emphasize continuum models (including cluster-continuum models). [Pg.341]


See other pages where Explicit solvent molecules is mentioned: [Pg.220]    [Pg.628]    [Pg.134]    [Pg.145]    [Pg.145]    [Pg.148]    [Pg.6]    [Pg.241]    [Pg.96]    [Pg.268]    [Pg.366]    [Pg.35]    [Pg.44]    [Pg.246]    [Pg.277]    [Pg.18]    [Pg.294]    [Pg.686]    [Pg.254]    [Pg.465]    [Pg.473]    [Pg.190]    [Pg.192]    [Pg.492]    [Pg.215]    [Pg.65]    [Pg.112]    [Pg.137]    [Pg.175]    [Pg.348]   
See also in sourсe #XX -- [ Pg.314 , Pg.328 ]




SEARCH



Explicit solvent

Explicitness

Solvent molecules

Solvent molecules: explicit treatment

© 2024 chempedia.info