Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bulk properties, characterization

Colloidal particles can be seen as large, model atoms . In what follows we assume that particles with a typical radius <3 = lOO nm are studied, about lO times as large as atoms. Usually, the solvent is considered to be a homogeneous medium, characterized by bulk properties such as the density p and dielectric constant t. A full statistical mechanical description of the system would involve all colloid and solvent degrees of freedom, which tend to be intractable. Instead, the potential of mean force, V, is used, in which the interactions between colloidal particles are averaged over... [Pg.2667]

A microscopic description characterizes the structure of the pores. The objective of a pore-structure analysis is to provide a description that relates to the macroscopic or bulk flow properties. The major bulk properties that need to be correlated with pore description or characterization are the four basic parameters porosity, permeability, tortuosity and connectivity. In studying different samples of the same medium, it becomes apparent that the number of pore sizes, shapes, orientations and interconnections are enormous. Due to this complexity, pore-structure description is most often a statistical distribution of apparent pore sizes. This distribution is apparent because to convert measurements to pore sizes one must resort to models that provide average or model pore sizes. A common approach to defining a characteristic pore size distribution is to model the porous medium as a bundle of straight cylindrical or rectangular capillaries (refer to Figure 2). The diameters of the model capillaries are defined on the basis of a convenient distribution function. [Pg.65]

Most of these studies, mainly in the period 1955 to 1970, have been concerned with cathodic hydrogen evolution. Different parameters characterizing the bulk properties of each metal have been adduced, including physical parameters such as electron work funchon, electrical conductivity, hardness, compressibility, temperature of evaporation, and heat of evaporation, and chemical parameters such as the affinity to hydrogen or oxygen. [Pg.526]

We would like to point out that an order parameter indicates the static property of the lipid bilayer, whereas the rotational motion, the oxygen transport parameter (Section 4.1), and the chain bending (Section 4.4) characterize membrane dynamics (membrane fluidity) that report on rotational diffusion of alkyl chains, translational diffusion of oxygen molecules, and frequency of alkyl chain bending, respectively. The EPR spin-labeling approach also makes it possible to monitor another bulk property of lipid bilayer membranes, namely local membrane hydrophobicity. [Pg.194]

One of the most popular applications of molecular rotors is the quantitative determination of solvent viscosity (for some examples, see references [18, 23-27] and Sect. 5). Viscosity refers to a bulk property, but molecular rotors change their behavior under the influence of the solvent on the molecular scale. Most commonly, the diffusivity of a fluorophore is related to bulk viscosity through the Debye-Stokes-Einstein relationship where the diffusion constant D is inversely proportional to bulk viscosity rj. Established techniques such as fluorescent recovery after photobleaching (FRAP) and fluorescence anisotropy build on the diffusivity of a fluorophore. However, the relationship between diffusivity on a molecular scale and bulk viscosity is always an approximation, because it does not consider molecular-scale effects such as size differences between fluorophore and solvent, electrostatic interactions, hydrogen bond formation, or a possible anisotropy of the environment. Nonetheless, approaches exist to resolve this conflict between bulk viscosity and apparent microviscosity at the molecular scale. Forster and Hoffmann examined some triphenylamine dyes with TICT characteristics. These dyes are characterized by radiationless relaxation from the TICT state. Forster and Hoffmann found a power-law relationship between quantum yield and solvent viscosity both analytically and experimentally [28]. For a quantitative derivation of the power-law relationship, Forster and Hoffmann define the solvent s microfriction k by applying the Debye-Stokes-Einstein diffusion model (2)... [Pg.274]

There is now available a substantial amount of information on the principles and techniques involved in preparing evaporated alloy films suitable for adsorption or catalytic work, although some preparative methods, e.g., vapor quenching, used in other research fields have not yet been adopted. Alloy films have been characterized with respect to bulk properties, e.g., uniformity of composition, phase separation, crystallite orientation, and surface areas have been measured. Direct quantitative measurements of surface composition have not been made on alloy films prepared for catalytic studies, but techniques, e.g., Auger electron spectroscopy, are available. [Pg.184]

Their bulk properties as well as their chemical composition can characterize crude oils. Distillation of cmde oil provides fraction profiles over a certain boiling range. The crude oil as well as the distillation fractions can be described in terms of density, viscosity, refractive index, sulfur content, and other bulk parameters. [Pg.203]

The respirable powders of a DPI cannot be characterized adequately by single-particle studies alone bulk properties must also be assessed since they contribute to ease of manufacture and affect system performance. Primary bulk properties include particle size, particle size distribution, bulk density, and surface area. These properties, along with particle electrostatics, shape, surface morphology, etc., affect secondary bulk-powder characteristics such as powder fiow, handling, consolidation, and dispersibility. [Pg.97]

Contrary to a fluid in the gaseous state, a liquid has a surface, and is characterized by a surface tension. For water, the surface tension is 72 mN m" at 25°C [1,2]. Again, contrary to the fluid in the gaseous state, the volume of a liquid does not change appreciably under pressure it has a low compressibility and shares this property with matter in the solid (crystalline, glassy, or amorphous) state. For water, the compressibility is 0.452 (GPa)" at 25°C [1,2]. These are macroscopic, or bulk, properties that single out the liquid state from other states of aggregation of matter. [Pg.37]

Ultimately physical theories should be expressed in quantitative terms for testing and use, but because of the complexity of liquid systems this can only be accomplished by making severe approximations. For example, it is often necessary to treat the solvent as a continuous homogeneous medium characterized by bulk properties such as dielectric constant and density, whereas we know that the solvent is a molecular assemblage with short-range structure. For an example of this tool with supercritical fluids see Ting et al., 1993. [Pg.89]

Along this line, the limitations of the technique used must be recognized. Some measure predominantly bulk properties, e.g., X-ray diffraction and magnetic susceptibility whereas, others are sensitive to surface composition, e.g., adsorption and ESCA. For example, in one reported study only cobalt in tetrahedral coordination was found on a catalyst by diffuse reflection spectroscopy, but magnetic measurements revealed that octahedral cobalt must also be present (10). Thus, it is dangerous to rely on any one method to characterize these catalysts. [Pg.268]

Characterization of the Bulk Properties of Catalysts Measurements of Particle-size Distribution Functions of Supported Catalysts -... [Pg.62]

The past decade has seen a dramatic improvement in the strategies and instrumentation available to characterize the structures of interfacial supramolecular assemblies. Current thrusts are towards in situ techniques that probe the structure of the interfacial supramolecular assembly with increasingly fine spatial and time resolution. The objective of this field is to assemble reaction centers around which the environment is purposefully structured at the molecular level, but extends over supramolecular domains. The properties of the assembly are controlled not only by the properties of the molecular building blocks but especially by the interface. Therefore, the focus is on both the interfacial and bulk properties of monolayers and thin films. Issues that need to be addressed include the film thickness, structural homogeneity and long-range order, as well as the electrochemical and... [Pg.60]

A significant number of studies have characterized the physical properties of eutectic-based ionic liquids but these have tended to focus on bulk properties such as viscosity, conductivity, density and phase behavior. These are all covered in Chapter 2.3. Some data are now emerging on speciation but little information is available on local properties such as double layer structure or adsorption. Deposition mechanisms are also relatively rare as are studies on diffusion. Hence the differences between metal deposition in aqueous and ionic liquids are difficult to analyse because of our lack of understanding about processes occurring close to the electrode/liquid interface. [Pg.104]


See other pages where Bulk properties, characterization is mentioned: [Pg.683]    [Pg.473]    [Pg.263]    [Pg.271]    [Pg.683]    [Pg.473]    [Pg.263]    [Pg.271]    [Pg.2271]    [Pg.473]    [Pg.65]    [Pg.59]    [Pg.229]    [Pg.222]    [Pg.388]    [Pg.4]    [Pg.111]    [Pg.4]    [Pg.1189]    [Pg.159]    [Pg.119]    [Pg.648]    [Pg.131]    [Pg.136]    [Pg.277]    [Pg.134]    [Pg.248]    [Pg.327]    [Pg.7]    [Pg.580]    [Pg.44]    [Pg.290]    [Pg.74]    [Pg.267]    [Pg.61]    [Pg.277]    [Pg.64]    [Pg.18]    [Pg.11]   
See also in sourсe #XX -- [ Pg.2 , Pg.97 ]




SEARCH



Bulk characterization

Bulk properties

Property Characterization

© 2024 chempedia.info