Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diffusion Stokes-Einstein

See Nernst-Plank equation, diffusion, Stokes-Einstein equation. [Pg.643]

Figure 5 relates N j to collection efficiency particle diffusivity from Stokes-Einstein equation assumes Brownian motion same order of magnitude or greater than mean free path of gas molecules (0.1 pm at... [Pg.392]

Supercritical Mixtures Dehenedetti-Reid showed that conven-tionaf correlations based on the Stokes-Einstein relation (for hquid phase) tend to overpredict diffusivities in the supercritical state. Nevertheless, they observed that the Stokes-Einstein group D g l/T was constant. Thus, although no general correlation ap es, only one data point is necessaiy to examine variations of fluid viscosity and/or temperature effects. They explored certain combinations of aromatic solids in SFg and COg. [Pg.595]

Wilke-Chang This correlation for D°b is one of the most widely used, and it is an empirical modification of the Stokes-Einstein equation. It is not very accurate, however, for water as the solute. Otherwise, it apphes to diffusion of very dilute A in B. The average absolute error for 251 different systems is about 10 percent. ( )b is an association factor of solvent B that accounts for hydrogen bonding. [Pg.596]

The Stokes-Einstein equation has already been presented. It was noted that its vahdity was restricted to large solutes, such as spherical macromolecules and particles in a continuum solvent. The equation has also been found to predict accurately the diffusion coefficient of spherical latex particles and globular proteins. Corrections to Stokes-Einstein for molecules approximating spheroids is given by Tanford. Since solute-solute interactions are ignored in this theory, it applies in the dilute range only. [Pg.598]

In connection with the earlier consideration of diffusion in liquids using tire Stokes-Einstein equation, it can be concluded that the temperature dependence of the diffusion coefficient on the temperature should be T(exp(—Qvis/RT)) according to this equation, if the activation energy for viscous flow is included. [Pg.295]

Using the Stokes-Einstein equation for the viscosity, which is unexpectedly useful for a range of liquids as an approximate relation between diffusion and viscosity, explains a resulting empirical expression for the rate of formation of nuclei of the critical size for metals... [Pg.300]

By equating Fiek s seeond law and the Stokes-Einstein equation for diffusivity, Smoluehowski (1916,1917) showed that the eollision frequeney faetor takes the form... [Pg.170]

Very commonly Eq. (4-5) is combined with Eq. (4-6), the Stokes-Einstein equation relating the diffusion coefficient to the viscosity -q. [Pg.135]

Equations (4-5) and (4-7) are alternative expressions for the estimation of the diffusion-limited rate constant, but these equations are not equivalent, because Eq. (4-7) includes the assumption that the Stokes-Einstein equation is applicable. Olea and Thomas" measured the kinetics of quenching of pyrene fluorescence in several solvents and also measured diffusion coefficients. The diffusion coefficients did not vary as t) [as predicted by Eq. (4-6)], but roughly as Tf. Thus Eq. (4-7) is not valid, in this system, whereas Eq. (4-5), used with the experimentally measured diffusion coefficients, gave reasonable agreement with measured rate constants. [Pg.136]

Following the general trend of looldng for a molecular description of the properties of matter, self-diffusion in liquids has become a key quantity for interpretation and modeling of transport in liquids [5]. Self-diffusion coefficients can be combined with other data, such as viscosities, electrical conductivities, densities, etc., in order to evaluate and improve solvodynamic models such as the Stokes-Einstein type [6-9]. From temperature-dependent measurements, activation energies can be calculated by the Arrhenius or the Vogel-Tamman-Fulcher equation (VTF), in order to evaluate models that treat the diffusion process similarly to diffusion in the solid state with jump or hole models [1, 2, 7]. [Pg.164]

T0 is a reference temperature which can be identified with T, and although the constant B is not related to any simple activation process, it has dimensions of energy. This form of the equation is derived by assuming an electrolyte to be fully dissociated in the solvent, so it can be related to the diffusion coefficient through the Stokes-Einstein equation. It suggests that thermal motion above T0 contributes to relaxation and transport processes and that... [Pg.507]

The same equation applies to other solvents. It is often easier to incorporate an expression for the diffusion coefficient than a numerical value, which may not be available. According to the Stokes-Einstein equation,6 diffusion coefficients can be estimated from the solvent viscosity by... [Pg.200]

Using the Stokes-Einstein equation of diffusion coefficient ... [Pg.98]

According to Stokes-Einstein equation, the diffusion coefficient is inversely proportional to the solution viscosity which increases with temperature. Hence, a lower diffusion coefficient corresponds to a lower size molecule. [Pg.109]

The Stokes-Einstein equation can be successfully used to explain diffusion under the following conditions [401], where (a) the diffusing molecule is large with respect to the molecules defining the medium, (b) the medium has a very low viscosity, and (c) no solute-solvent interactions occur. [Pg.580]

Perrin model and the Johansson and Elvingston model fall above the experimental data. Also shown in this figure is the prediction from the Stokes-Einstein-Smoluchowski expression, whereby the Stokes-Einstein expression is modified with the inclusion of the Ein-stein-Smoluchowski expression for the effect of solute on viscosity. Penke et al. [290] found that the Mackie-Meares equation fit the water diffusion data however, upon consideration of water interactions with the polymer gel, through measurements of longitudinal relaxation, adsorption interactions incorporated within the volume averaging theory also well described the experimental results. The volume averaging theory had the advantage that it could describe the effect of Bis on the relaxation within the same framework as the description of the diffusion coefficient. [Pg.584]

Since thermal agitation is the common origin of transport properties, it gives rise to several relationships among them, for example, the Nemst-Einstein relation between diffusion and conductivity, or the Stokes-Einstein relation between diffusion and viscosity. Although transport... [Pg.120]

Under the condition that the Stokes-Einstein model holds, the translational diffusion coefficient, D, can be represented by Eq. (8.3). the diffusion time, Xd, obtained through the analysis is given by Eq. (8.4). [Pg.141]

Routh and Russel [10] proposed a dimensionless Peclet number to gauge the balance between the two dominant processes controlling the uniformity of drying of a colloidal dispersion layer evaporation of solvent from the air interface, which serves to concentrate particles at the surface, and particle diffusion which serves to equilibrate the concentration across the depth of the layer. The Peclet number, Pe is defined for a film of initial thickness H with an evaporation rate E (units of velocity) as HE/D0, where D0 = kBT/6jT ir- the Stokes-Einstein diffusion coefficient for the particles in the colloid. Here, r is the particle radius, p is the viscosity of the continuous phase, T is the absolute temperature and kB is the Boltzmann constant. When Pe 1, evaporation dominates and particles concentrate near the surface and a skin forms, Figure 2.3.5, lower left. Conversely, when Pe l, diffusion dominates and a more uniform distribution of particles is expected, Figure 2.3.5, upper left. [Pg.97]

The dynamical properties of polymer molecules in solution have been investigated using MPC dynamics [75-77]. Polymer transport properties are strongly influenced by hydrodynamic interactions. These effects manifest themselves in both the center-of-mass diffusion coefficients and the dynamic structure factors of polymer molecules in solution. For example, if hydrodynamic interactions are neglected, the diffusion coefficient scales with the number of monomers as D Dq /Nb, where Do is the diffusion coefficient of a polymer bead and N), is the number of beads in the polymer. If hydrodynamic interactions are included, the diffusion coefficient adopts a Stokes-Einstein formD kltT/cnr NlJ2, where c is a factor that depends on the polymer chain model. This scaling has been confirmed in MPC simulations of the polymer dynamics [75]. [Pg.123]

The method preferred in our laboratory for determining the UWL permeability is based on the pH dependence of effective permeabilities of ionizable molecules [Eq. (7.52)]. Nonionizable molecules cannot be directly analyzed this way. However, an approximate method may be devised, based on the assumption that the UWL depends on the aqueous diffusivity of the molecule, and furthermore, that the diffusivity depends on the molecular weight of the molecule. The thickness of the unstirred water layer can be determined from ionizable molecules, and applied to nonionizable substances, using the (symmetric) relationship Pu = Daq/ 2/iaq. Fortunately, empirical methods for estimating values of Daq exist. From the Stokes-Einstein equation, applied to spherical molecules, diffusivity is expected to depend on the inverse square root of the molecular weight. A plot of log Daq versus log MW should be linear, with a slope of —0.5. Figure 7.37 shows such a log-log plot for 55 molecules, with measured diffusivities taken from several... [Pg.207]

Measurements of CuS04 molecular diffusivity by Cole and Gordon (C12a), referred to above, were carried out in diaphragm cells, mostly at 18°C. Their results were correlated by Fenech and Tobias (F3) using the Stokes-Einstein equation... [Pg.234]

One of the most popular applications of molecular rotors is the quantitative determination of solvent viscosity (for some examples, see references [18, 23-27] and Sect. 5). Viscosity refers to a bulk property, but molecular rotors change their behavior under the influence of the solvent on the molecular scale. Most commonly, the diffusivity of a fluorophore is related to bulk viscosity through the Debye-Stokes-Einstein relationship where the diffusion constant D is inversely proportional to bulk viscosity rj. Established techniques such as fluorescent recovery after photobleaching (FRAP) and fluorescence anisotropy build on the diffusivity of a fluorophore. However, the relationship between diffusivity on a molecular scale and bulk viscosity is always an approximation, because it does not consider molecular-scale effects such as size differences between fluorophore and solvent, electrostatic interactions, hydrogen bond formation, or a possible anisotropy of the environment. Nonetheless, approaches exist to resolve this conflict between bulk viscosity and apparent microviscosity at the molecular scale. Forster and Hoffmann examined some triphenylamine dyes with TICT characteristics. These dyes are characterized by radiationless relaxation from the TICT state. Forster and Hoffmann found a power-law relationship between quantum yield and solvent viscosity both analytically and experimentally [28]. For a quantitative derivation of the power-law relationship, Forster and Hoffmann define the solvent s microfriction k by applying the Debye-Stokes-Einstein diffusion model (2)... [Pg.274]

Loutfy and coworkers [29, 30] assumed a different mechanism of interaction between the molecular rotor molecule and the surrounding solvent. The basic assumption was a proportionality of the diffusion constant D of the rotor in a solvent and the rotational reorientation rate kOI. Deviations from the Debye-Stokes-Einstein hydrodynamic model were observed, and Loutfy and Arnold [29] found that the reorientation rate followed a behavior analogous to the Gierer-Wirtz model [31]. The Gierer-Wirtz model considers molecular free volume and leads to a power-law relationship between the reorientation rate and viscosity. The molecular free volume can be envisioned as the void space between the packed solvent molecules, and Doolittle found an empirical relationship between free volume and viscosity [32] (6),... [Pg.275]

Baxendale and Wardman (1973) note that the reaction of es with neutrals, such as acetone and CC14, in n-propanol is diffusion-controlled over the entire liquid phase. The values calculated from the Stokes-Einstein relation, k = 8jtRT/3jj, where 7] is the viscosity, agree well with measurement. Similarly, Fowles (1971) finds that the reaction of es with acid in alcohols is diffusion-controlled, given adequately by the Debye equation, which is not true in water. The activation energy of this reaction should be equal to that of the equivalent conductivity of es + ROH2+, which agrees well with the observation of Fowles (1971). [Pg.187]


See other pages where Diffusion Stokes-Einstein is mentioned: [Pg.511]    [Pg.133]    [Pg.31]    [Pg.598]    [Pg.1511]    [Pg.294]    [Pg.892]    [Pg.238]    [Pg.56]    [Pg.220]    [Pg.435]    [Pg.133]    [Pg.318]    [Pg.288]    [Pg.226]    [Pg.102]    [Pg.193]    [Pg.175]    [Pg.210]    [Pg.345]    [Pg.20]    [Pg.177]   
See also in sourсe #XX -- [ Pg.194 , Pg.206 , Pg.354 , Pg.360 ]




SEARCH



Diffusion Einstein

Stokes-Einstein

© 2024 chempedia.info