Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Blood, physical volume

There are various factors that can influence the distribution of analytes in a dried blood spot. Water-soluble chemicals uniformly coated on DBS cards would redistribute when the blood was spotted. The redistribution of chemicals may depend on their properties, viscosity of blood, the volume spotted, and the technique used for spotting. Another factor is the viscosity of the blood. Viscosity is normally dependent on the blood composition (hematocrit, protein, lipid levels), and it can affect the physical spread of the blood spot in that the same volume of a less viscous blood will form a larger diameter spot than that of a more viscous blood sample. Viscosity, combined with the chemical redistribution on the sample cards, will increase the complexity of the analyte distribution. [Pg.75]

As mentioned above, the one-compartment model does not require that the concentration throughout the compartment be the same but that there is an equilibration between the concentrations throughout the body. Therefore, the volume of distribution is not a physical volume and may be many times larger than the size of the subject in cases where the drug is extensively distributed outside the blood. [Pg.268]

History. Methods for the fractionation of plasma were developed as a contribution to the U.S. war effort in the 1940s (2). Following pubHcation of a seminal treatise on the physical chemistry of proteins (3), a research group was estabUshed which was subsequendy commissioned to develop a blood volume expander for the treatment of military casualties. Process methods were developed for the preparation of a stable, physiologically acceptable solution of alburnin [103218-45-7] the principal osmotic protein in blood. Eady preparations, derived from equine and bovine plasma, caused allergic reactions when tested in humans and were replaced by products obtained from human plasma (4). Process studies were stiU being carried out in the pilot-plant laboratory at Harvard in December 1941 when the small supply of experimental product was mshed to Hawaii to treat casualties at the U.S. naval base at Pead Harbor. On January 5, 1942 the decision was made to embark on large-scale manufacture at a number of U.S. pharmaceutical plants (4,5). [Pg.526]

Dead space. Anatomical dead space is equal to the volume of the conducting airways. This is determined by the physical characteristics of the lungs because, by definition, these airways do not contain alveoli to participate in gas exchange. Alveolar dead space is the volume of air that enters unperfused alveoli. In other words, these alveoli receive airflow but no blood flow with no blood flow to the alveoli, gas exchange cannot take place. Therefore, alveolar dead space is based on functional considerations rather than anatomical factors. Healthy lungs have little or no alveolar dead space. Various pathological conditions, such as low cardiac output, may result in alveolar dead space. The anatomical dead space combined with the alveolar dead space is referred to as physiological dead space ... [Pg.257]

Water, increased water intake leads to higher blood volume and prevent dehydration Compression stockings Increased physical activity... [Pg.73]

Interfacing the TEA to both a gas and a HPLC has been shown to be selective to nitro-based explosives (NG, PETN, EGDN, 2,4-DNT, TNT, RDX and HMX) determined in real world samples, such as pieces of explosives, post-blast debris, post-blast air samples, hand swabs and human blood, at picogram level sensitivity [14], The minimum detectable amount for most explosives reported was 4-5 pg injected into column. A pyrolyser temperature of 550°C for HPLC-TEA and 900°C for GC/TEA was selected. As the authors pointed out, GC uses differences in vapour pressure and solubility in the liquid phase of the column to separate compounds, whereas in HPLC polarity, physical size and shape characteristics determine the chromatographic selectivity. So, the authors reported that the use of parallel HPLC-TEA and GC-TEA techniques provides a novel self-confirmatory capability, and because of the selectivity of the technique, there was no need for sample clean-up before analysis. The detector proved to be linear over six orders of magnitude. In the determination of explosives dissolved in acetone and diluted in methanol to obtain a 10-ppm (weight/volume) solution, the authors reported that no extraneous peaks were observed even when the samples were not previously cleaned up. Neither were they observed in the analysis of post-blast debris. Controlled experiments with handswabs spiked with known amounts of explosives indicated a lower detection limit of about 10 pg injected into column. [Pg.24]

There are three chapters in this volume, two of which address the microscale. Ploehn and Russel address the Interactions Between Colloidal Particles and Soluble Polymers, which is motivated by advances in statistical mechanics and scaling theories, as well as by the importance of numerous polymeric flocculants, dispersants, surfactants, and thickeners. How do polymers thicken ketchup Adler, Nadim, and Brenner address Rheological Models of Suspensions, a closely related subject through fluid mechanics, statistical physics, and continuum theory. Their work is also inspired by industrial processes such as paint, pulp and paper, and concrete and by natural systems such as blood flow and the transportation of sediment in oceans and rivers. Why did doctors in the Middle Ages induce bleeding in their patients in order to thin their blood ... [Pg.239]


See other pages where Blood, physical volume is mentioned: [Pg.140]    [Pg.62]    [Pg.55]    [Pg.110]    [Pg.203]    [Pg.168]    [Pg.456]    [Pg.66]    [Pg.722]    [Pg.387]    [Pg.264]    [Pg.314]    [Pg.287]    [Pg.272]    [Pg.387]    [Pg.40]    [Pg.189]    [Pg.453]    [Pg.372]    [Pg.129]    [Pg.220]    [Pg.311]    [Pg.78]    [Pg.250]    [Pg.263]    [Pg.415]    [Pg.191]    [Pg.204]    [Pg.358]    [Pg.344]    [Pg.24]    [Pg.173]    [Pg.70]    [Pg.73]    [Pg.214]    [Pg.202]    [Pg.188]    [Pg.164]    [Pg.415]    [Pg.1119]    [Pg.297]    [Pg.307]    [Pg.342]   
See also in sourсe #XX -- [ Pg.5 ]




SEARCH



Physical blood

© 2024 chempedia.info